SummaryBackground-Metformin might reduce insulin requirement and improve glycaemia in patients with type 1 diabetes, but whether it has cardiovascular benefits is unknown. We aimed to investigate whether metformin treatment (added to titrated insulin therapy) reduced atherosclerosis, as measured by progression of common carotid artery intima-media thickness (cIMT), in adults with type 1 diabetes at increased risk for cardiovascular disease.
An Expert Panel group of scientists and clinicians met to consider several aspects related to non-fasting and postprandial triglycerides (TGs) and their role as risk factors for cardiovascular disease (CVD). In this context, we review recent epidemiological studies relevant to elevated non-fasting TGs as a risk factor for CVD and provide a suggested classification of non-fasting TG concentration. Secondly, we sought to describe methodologies to evaluate postprandial TG using a fat tolerance test (FTT) in the clinic. Thirdly, we discuss the role of non-fasting lipids in the treatment of postprandial hyperlipemia. Finally, we provide a series of clinical recommendations relating to non-fasting TGs based on the consensus of the Expert Panel: 1). Elevated non-fasting TGs are a risk factor for CVD. 2). The desirable non-fasting TG concentration is <2 mmol/l (<180 mg/dl). 3). For standardized postprandial testing, a single FTT meal should be given after an 8 h fast and should consist of 75 g of fat, 25 g of carbohydrates and 10 g of protein. 4). A single TG measurement 4 h after a FTT meal provides a good evaluation of the postprandial TG response. 5). Preferably, subjects with non-fasting TG levels of 1-2 mmol/l (89-180 mg/dl) should be tested with a FTT. 6). TG concentration ≤ 2.5 mmol/l (220 mg/dl) at any time after a FTT meal should be considered as a desirable postprandial TG response. 7). A higher and undesirable postprandial TG response could be treated by aggressive lifestyle modification (including nutritional supplementation) and/or TG lowering drugs like statins, fibrates and nicotinic acid.
Abstract-We reported aldosterone as a novel adipocyte-derived factor that regulates vascular function. We aimed to investigate molecular mechanisms, signaling pathways, and functional significance of adipocyte-derived aldosterone and to test whether adipocyte-derived aldosterone is increased in diabetes mellitus-associated obesity, which contributes to vascular dysfunction. Studies were performed in the 3T3-L1 adipocyte cell line and mature adipocytes isolated from human and mouse (C57BL/6J) adipose tissue. Mesenteric arteries with and without perivascular fat and mature adipocytes were obtained from obese diabetic db/db and control db/ϩ mice. Aldosterone synthase (CYP11B2; mRNA and protein) was detected in 3T3-L1 and mature adipocytes, which secrete aldosterone basally and in response to angiotensin II (Ang II). In 3T3-L1 adipocytes, Ang II stimulation increased aldosterone secretion and CYP11B2 expression. Ang II effects were blunted by an Ang II type 1 receptor antagonist (candesartan) and inhibitors of calcineurin (cyclosporine A and FK506) and nuclear factor of activated T-cells (VIVIT). FAD286 (aldosterone synthase inhibitor) blunted adipocyte differentiation. In candesartan-treated db/db mice (1 mg/kg per day, 4 weeks) increased plasma aldosterone, CYP11B2 expression, and aldosterone secretion were reduced. Acetylcholine-induced relaxation in db/db mesenteric arteries containing perivascular fat was improved by eplerenone (mineralocorticoid receptor antagonist) without effect in db/ϩ mice. Adipocytes possess aldosterone synthase and produce aldosterone in an Ang II/Ang II type 1 receptor/calcineurin/nuclear factor of activated T-cells-dependent manner. Functionally adipocyte-derived aldosterone regulates adipocyte differentiation and vascular function in an autocrine and paracrine manner, respectively. These novel findings identify adipocytes as a putative link between aldosterone and vascular dysfunction in diabetes mellitus-associated obesity. (Hypertension. 2012;59:1069-1078.) • Online Data Supplement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.