Lysenko 91,92 | Armin Macanović 93 | Parastoo Mahdavi 94 | Peter Manning 35 | Corrado Marcenò 13 | Vassiliy Martynenko 95 | Maurizio Mencuccini 96 | Vanessa Minden 97 | Jesper Erenskjold Moeslund 54 | Marco Moretti 98 | Jonas V. Müller 99 | Abstract Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level.Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale. K E Y W O R D S biodiversity, community ecology, ecoinformatics, functional diversity, global scale, macroecology, phylogenetic diversity, plot database, sPlot, taxonomic diversity, vascular plant, vegetation relevé 166 |
Even though information on global biodiversity trends becomes increasingly available, large taxonomic and spatial data gaps persist at the scale relevant to planning conservation interventions. This is because data collectors are hesitant to share data with global repositories due to workload, lack of incentives, and perceived risk of losing intellectual property rights. In contrast, due to greater conceptual and methodological proximity, taxon-specific database initiatives can provide more direct benefits to data collectors through research collaborations and shared authorship. The IUCN SSC Ape Populations, Environments and Surveys (A.P.E.S.) database was created in 2005 as a repository for data on great apes and other primate taxa. It aims to acquire field survey data and make different types of data accessible, and OPEN ACCESS RECEIVED provide up-to-date species status information. To support the current update of the conservation action plan for western chimpanzees (Pan troglodytes verus) we compiled field surveys for this taxon from IUCN SSC A.P.E.S., 75% of which were unpublished. We used spatial modeling to infer total population size, range-wide density distribution, population connectivity and landscape-scale metrics. We estimated a total abundance of 52 800 (95% CI 17 577-96 564) western chimpanzees, of which only 17% occurred in national parks. We also found that 10% of chimpanzees live within 25 km of four multi-national 'development corridors' currently planned for West Africa. These large infrastructure projects aim to promote economic integration and agriculture expansion, but are likely to cause further habitat loss and reduce population connectivity. We close by demonstrating the wealth of conservation-relevant information derivable from a taxon-specific database like IUCN SSC A.P.E.S. and propose that a network of many more such databases could be created to provide the essential information to conservation that can neither be supplied by one-off projects nor by global repositories, and thus are highly complementary to existing initiatives.
Heinicke et al. Positive Deviants in Chimpanzee Populations social-ecological configurations: first, rainforest habitats with a low degree of human impact, second, steep areas, and third, areas with high prevalence of hunting taboos and low degree of human impact. The largest chimpanzee populations are nowadays found under the third social-ecological configuration, even though most of these areas are not officially protected. Most commonly chimpanzee conservation has been based on exclusion of threats by creation of protected areas and law enforcement. Our findings suggest, however, that this approach should be complemented by an additional focus on threat reduction, i.e., interventions that directly target individual human behavior that is most threatening to chimpanzees, which is hunting. Although changing human behavior is difficult, stakeholder co-designed behavioral change approaches developed in the social sciences have been used successfully to promote pro-environmental behavior. With only a fraction of chimpanzees and primates living inside protected areas, such new approaches might be a way forward to improve primate conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.