BackgroundGlioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults accounting for about 50% of all gliomas. Up to now, the chemotherapy approaches for GBM were limited. 3-O-acetyl-11-keto-β-boswellic acid (AKBA), the major active ingredient of the gum resin from Boswellia serrata and Boswellia carteri Birdw., was reported to inhibit the growth of many types of cancer cells; however, the underlying mechanism of its anticancer effects are still unclear.MethodsThe effects of AKBA on cell viability and its cytotoxicity were determined using CCK8 and LDH kits respectively. The EdU-DNA synthesis assay was used to evaluate inhibition of cell proliferation by AKBA. The role of AKBA in glioblastoma cell functions such as migration/invasion, and colony formation was evaluated using transwell chambers and soft agar, respectively. Flow cytometry and western blotting were used to detect AKBA-induced apoptosis. Potential mechanisms of AKBA action were explored by RNA sequencing and the identified hub genes were validated by real-time quantitative PCR and western blotting. Finally, the in vivo anti-tumor activity of AKBA was evaluated against a human glioblastoma cell line, U87-MG, in a xenograft mouse model.ResultsAKBA inhibited cell proliferation, caused the release of LDH, decreased DNA synthesis, and inhibited the migration, invasion, and colony formation of U251 and U87-MG human glioblastoma cell lines. AKBA increased apoptosis as well as the activity of caspase 3/7 and the protein expression of cleaved-caspase 3 and cleaved PARP, while decreasing mitochondrial membrane potential. RNA-sequencing analyses showed that AKBA suppressed the expression of pRB, FOXM1, Aurora A, PLK1, CDC25C, p-CDK1, cyclinB1, Aurora B, and TOP2A while increasing the expression of p21 and GADD45A. These findings were validated by qRT-PCR and western blotting. The data are consistent with a mechanism in which AKBA arrested the cell cycle in glioblastoma cells at the G2/M phase by regulating the p21/FOXM1/cyclin B1 pathway, inhibited mitosis by downregulating the Aurora B/TOP2A pathway, and induced mitochondrial-dependent apoptosis. Oral administration of AKBA (100 mg/kg) significantly suppressed the tumorigenicity of U87-MG cells in a xenograft mouse model.ConclusionsTaken together, these results suggest that AKBA (molecular weight, 512.7 Da) might be a promising chemotherapy drug in the treatment of GBM.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0805-4) contains supplementary material, which is available to authorized users.
Glioblastoma multiforme (GBM) in the central nervous system is the most lethal advanced glioma and currently there is no effective treatment for it. Studies of sinomenine, an alkaloid from the Chinese medicinal plant, Sinomenium acutum , showed that it had inhibitory effects on several kinds of cancer. Here, we synthesized a sinomenine derivative, sino-wcj-33 (SW33), tested it for antitumor activity on GBM and explored the underlying mechanism. SW33 significantly inhibited proliferation and colony formation of GBM and reduced migration and invasion of U87 and U251 cells. It also arrested the cell cycle at G2/M phase and induced mitochondria-dependent apoptosis. Differential gene enrichment analysis and pathway validation showed that SW33 exerted anti-GBM effects by regulating PI3K/AKT and AMPK signaling pathways and significantly suppressed tumorigenicity with no obvious adverse effects on the body. SW33 also induced autophagy through the PI3K/AKT/mTOR and AMPK/mTOR pathways. Thus, SW33 appears to be a promising drug for treating GBM effectively and safely.
Nymphaea candida was used to treat hepatitis in Ugyhur medicine, and nicotiflorin (kaempferol 3-O-β-rutinoside) is the main characteristic component in this plant. In this study, The the hepatoprotective activities of nicotiflorin from N. candida were investigated by Concanavalin A (Con A, 20 mg/kg bw)-and D-Galactosamine (D-GalN, 800 mg/kg bw)-induced acute liver injury in mice. Pretreatment with nicotiflorin (25, 50, 100 mg/kg bw/day, p.o.) for ten days significantly reduced the impact of Con A toxicity (20 mg/kg bw) on the serum markers of liver injury, aspartate aminotransferase (AST), and alanine aminotransferase (ALT). The hepatic anti-oxidant parameters (malondialdehyde, MDA; superoxide dismutase, SOD; glutathione, GSH; and nitric oxide, NO) in mice with nicotiflorin treatment were significantly antagonized for the pro-oxidant effects of Con A. Moreover, pretreatment with nicotiflorin (100 mg/kg bw) significantly decreased Con A-induced elevation in the serum levels of pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) (p < 0.05). A protective effect was reconfirmed against D-GalN-induced chemical liver injury, elevated serum enzymatic and cytokines levels were significantly decreased by nicotiflorin, and liver homogenate antioxidant indicators were significantly restored toward normal levels. Both histopathological studies also supported the protective effects of nicotiflorin. Therefore, the presented results suggest that nicotiflorin is the potent hepatoprotective agent that could protect the liver against acute immunological and chemical injury; this ability might be attributed to its antioxidant and immunoregulation potential.
Chemical examination of the exuded gum resin of Boswellia carterii resulted in the isolation of nine new prenylaromadendrane-type diterpenes, boscartols A-I (1-9). The structures of these compounds were established by extensive 1D and 2D NMR spectroscopic analyses, mass spectrometric data, and circular dichroism spectra. Compounds 1-3, 5, 6, 8, and 9 (10 μM) showed moderate hepatoprotective activity against d-galactosamine-induced HL-7702 cell damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.