The effect of normothermic machine perfusion (NMP) on post-reperfusion hemodynamics and extrahepatic biliary duct histology of donors after cardiac death (DCD) livers after transplantation has not been addressed thoroughly and represented the object of this study. Ten livers (n=5/group) with 60’ of warm ischemia were preserved by cold storage (CS) or sanguineous NMP for 10 hours, and then reperfused for 24 hours with whole blood in an isolated perfusion system to simulate transplantation. In our experiment, arterial and portal venous flows were stable in NMP group during the entire simulated reperfusion, while decreased dramatically in CS group after 16 hours post-reperfusion (P<.05), findings consistent with severe parenchymal injury. Similarly, significant differences existed between CS and NMP group on hepatocellular enzyme release, bile volume produced, and enzyme released into bile (P<.05). On histology CS livers presented with diffuse hepatocyte congestion, necrosis, intraparenchymal hemorrhage, denudated biliary epithelium and submucosal bile duct necrosis, while NMP liver showed very mild injury in liver parenchyma and biliary architecture. Most importantly, Ki67 staining in extrahepatic bile duct showed biliary epithelial regeneration. Our findings advance the knowledge of post-reperfusion events that characterize DCD livers and propose NMP as a beneficial preservation modality able to improve biliary regeneration after a major ischemic event, which may prevent in clinical transplantation the development of ischemic cholangiopathy.
Ischemic-type biliary stricture (ITBS) occurs in up to 50% after liver transplantation (LT) from donation after cardiac death (DCD) donors. Thrombus formation in the peribiliary microcirculation is a postulated mechanism. The aim was to describe our experience of tissue plasminogen activator (TPA) administration in DCD-LT. TPA was injected into the donor hepatic artery on the backtable (n = 22). Two recipients developed ITBS including one graft failure. Although excessive postreperfusion bleeding was seen in 14 recipients, the amount of TPA was comparable between those with and without excessive bleeding (6.4 ± 2.8 vs. 6.6 ± 2.8 mg, p = 0.78). However, donor age (41 ± 12 vs. 29 ± 9 years, p = 0.02), donor BMI (26.3 ± 5.5 vs. 21.7 ± 3.6 kg/m 2 , p = 0.03), previous laparotomy (50% vs. 0%, p = 0.02) and lactate after portal reperfusion (6.3 ± 4.6 vs. 2.8 ± 0.9 mmol/L, p = 0.005) were significantly greater in recipients with excessive bleeding. In conclusion, the use of TPA may lower the risk of ITBSrelated graft failure in DCD-LT. Excessive bleeding may be related to poor graft quality and previous laparotomy rather than the amount of TPA. Further studies are needed in larger population.
The utilization of normothermic machine perfusion (NMP) may be an effective strategy to resuscitate livers from donation after circulatory death (DCD). There is no consensus regarding the efficacy of different perfusates on graft and bile duct viability. The aim of this study was to compare, in an NMP porcine DCD model, the preservation potential of three different perfusates. Twenty porcine livers with 60 min of warm ischemia were separated into four preservation groups: cold storage (CS), NMP with Steen solution (Steen; XVIVO Perfusion Inc., Denver, CO), Steen plus red blood cells (RBCs), or whole blood (WB). All livers were preserved for 10 h and reperfused to simulate transplantation for 24 h. During preservation, the NMP with Steen group presented the highest hepatocellular injury. At reperfusion, the CS group had the lowest bile production and the worst hepatocellular injury compared with all other groups, followed by NMP with Steen; the Steen plus RBC and WB groups presented the best functional and hepatocellular injury outcomes, with WB livers showing lower aspartate aminotransferase release and a trend toward better results for most parameters. Based on our results, a perfusate that contains an oxygen carrier is most effective in a model of NMP porcine DCD livers compared with Steen solution. Specifically, WB-perfused livers showed a trend toward better outcomes compared with Steen plus RBCs.
Normothermic machine perfusion (NMP) is an emerging technology to preserve liver allografts more effectively than cold storage (CS). However, little is known about the effect of NMP on steatosis and the markers indicative of hepatic quality during NMP. To address these points, we perfused 10 discarded human livers with oxygenated NMP for 24 hours after 4-6 hours of CS. All livers had a variable degree of steatosis at baseline. The perfusate consisted of packed red blood cells and fresh frozen plasma. Perfusate analysis showed an increase in triglyceride levels from the 1st hour (median, 127 mg/dL; interquartile range [IQR], 95-149 mg/dL) to 24th hour of perfusion (median, 203 mg/dL; IQR, 171-304 mg/dL; P = 0.004), but tissue steatosis did not decrease. Five livers produced a significant amount of bile (≥5 mL/hour) consistently throughout 24 hours of NMP. Lactate in the perfusate cleared to <3 mmol/L in most livers within 4-8 hours of NMP, which was independent of bile production rate. This is the first study to characterize the lipid profile and functional assessment of discarded human livers at 24 hours of NMP. Liver Transplantation 24 233-245 2018 AASLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.