BackgroundSome sarcomas respond to immune checkpoint inhibition, but predictive biomarkers are unknown. We analyzed tumor DNA methylation profiles in relation to immunological parameters and response to anti-programmed cell death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy in patients with sarcoma.Patients and methodsWe retrospectively identified adult patients who had received anti-PD-1 ICI therapy for recurrent sarcoma in two independent centers. We performed (1) blinded radiological response evaluation according to immune response evaluation criteria in solid tumors (iRECIST) ; (2) tumor DNA methylation profiling of >850,000 probes using Infinium MethylationEPIC microarrays; (3) analysis of tumor-infiltrating immune cell subsets (CD3, CD8, CD45RO, FOXP3) and intratumoral expression of immune checkpoint molecules (PD-L1, PD-1, LAG-3) using immunohistochemistry; and (4) evaluation of blood-based systemic inflammation scores (neutrophil-to-lymphocyte ratio, leucocyte-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio). Response to anti-PD-1 ICI therapy was bioinformatically and statistically correlated with DNA methylation profiles and immunological data.Results35 patients (median age of 50 (23–81) years; 18 females, 17 males; 27 soft tissue sarcomas; 8 osteosarcomas) were included in this study. The objective response rate to anti-PD-1 ICI therapy was 22.9% with complete responses in 3 out of 35 and partial responses in 5 out of 35 patients. Adjustment of DNA methylation data for tumor-infiltrating immune cells resulted in identification of methylation differences between responders and non-responders to anti-PD-1 ICI. 2453 differentially methylated CpG sites (DMPs; 2043 with decreased and 410 with increased methylation) were identified. Clustering of sarcoma samples based on these DMPs revealed two main clusters: methylation cluster 1 (MC1) consisted of 73% responders and methylation cluster 2 (MC2) contained only non-responders to anti-PD-1 ICI. Median progression-free survival from anti-PD-1 therapy start of MC1 and MC2 patients was 16.5 and 1.9 months, respectively (p=0.001). Median overall survival of these patients was 34.4 and 8.0 months, respectively (p=0.029). The most prominent DNA methylation differences were found in pathways implicated in Rap1 signaling, focal adhesion, adherens junction Phosphoinositide 3-kinase (PI3K)-Akt signaling and extracellular matrix (ECM)–receptor interaction.ConclusionsOur data demonstrate that tumor DNA methylation profiles may serve as a predictive marker for response to anti-PD-1 ICI therapy in sarcoma.
BackgroundBiomarkers for response prediction to anti-programmed cell death 1 (PD-1) immune checkpoint inhibitors (ICI) in patients with head and neck squamous cell carcinoma (HNSCC) are urgently needed for a personalized therapy approach. We investigated the predictive potential of inflammatory parameters and DNA methylation profiling in patients with HNSCC treated with anti-PD-1 ICI.MethodsWe identified patients with HNSCC that were treated with anti-PD-1 ICI therapy in the recurrent or metastatic setting after progression to platinum-based chemotherapy in two independent centers. We analyzed DNA methylation profiles of >850.000 CpG sites in tumor specimens of these patients by Infinium MethylationEPIC microarrays, immune cell density in the tumor microenvironment (CD8, CD3, CD45RO, forkhead box P3 (FOXP3), CD68), PD-1 and programmed cell death ligand 1 (PD-L1) expression by immunohistochemistry, and blood inflammation markers (platelet-to-lymphocyte ratio, leucocyte-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio). DNA methylation profiles and immunological markers were bioinformatically and statistically correlated with radiological response to anti-PD-1 ICI.Results37 patients with HNSCC (median age of 62 years; range 49–83; 8 (21.6%) women, 29 (78.4%) men) were included (Center 1 N=26, 70.3%; Center 2 N=11, 29.7%). Median number of prior systemic therapies was 1 (range 1–4). Five out of 37 (13.5%) patients achieved an objective response to ICI. Median progression-free survival and median overall survival times were 3.7 months (range 0–22.9) and 9.0 months (range 0–38.8), respectively. Microarray analyses revealed a methylation signature including both hypomethylation and hypermethylation which was predictive for response to ICI and included several genes involved in cancer-related molecular pathways. Over-represented differentially methylated genes between responders and non-responders were associated with ‘Axon guidance’, ‘Hippo signaling’, ‘Pathways in cancer’ and ‘MAPK signaling’. A statistically significant correlation of PD-L1 expression and response was present (p=0.0498).ConclusionsOur findings suggest that tumor DNA methylation profiling may be useful to predict response to ICI in patients with HNSCC.
Purpose: The treatment of oligodendroglioma consists of tumor resection and radio-chemotherapy. The timing of radio-chemotherapy remains unclear and predictive biomarkers are limited. Methods: Adult patients diagnosed with isocitrate dehydrogenase (IDH)-mutated, 1p/19q-codeleted CNS WHO grade 2 and 3 oligodendroglioma at the Medical University of Vienna and the Kepler University Hospital Linz (Austria) in 1992-2019 were included. Progression-free (PFS) and overall survival (OS) between early postoperative treatment and initial observation were compared using propensity score-weighted Cox regression models. DNA methylation analysis of tumor tissue was performed using Illumina MethylationEPIC 850k microarrays. Results: 131/201 (65.2%) patients with CNS WHO grade 2 and 70/201 (34.8%) with grade 3 oligodendroglioma were identified. 83/201 (41.3%) patients underwent early postoperative treatment, of whom 56/83 (67.5%) received radio-chemotherapy, 15/84 (18.1%) radiotherapy (RT) only and 12/83 (14.5%) chemotherapy only. Temozolomide-based treatment was administered to 64/68 (94.1%) patients, while RT + procarbazine, lomustine (CCNU) and vincristine (PCV) was applied in 2/69 (3.5%) patients. Early treatment was not associated with PFS (adjusted hazard ratio (HR) 0.74; 95%CI: 0.33-1.65, p=0.459) or OS (adjusted HR: 2.07; 95%CI: 0.52-8.21, p=0.302) improvement. Unsupervised clustering analysis of DNA methylation profiles from patients receiving early treatment revealed two methylation clusters correlating with PFS, whereas no association of clustering with O6-methylguanine methyltransferase (MGMT) promoter methylation, CNS WHO grade, extent of resection, and treating center could be observed. Conclusions: In this retrospective study, early postoperative treatment was not associated with improved PFS/OS in oligodendroglioma. The potentially predictive value of whole-genome methylation profiling should be validated in prospective trials.
<p>Differentially methylated CpG sites in HER3+ vs HER3- breast cancer samples (HER2+ cohort)</p>
<p>Pathway enrichment analysis of genes associated with differentially methylated CpG sites in HER3+ vs. HER3-</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.