Loss of kidney function underlies many renal diseases1. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones2,3. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury4,5, providing a model for understanding how mammalian renal regeneration may be therapeutically activated. Here we trace the source of new nephrons in the adult zebrafish to small cellular aggregates containing nephron progenitors. Transplantation of single aggregates comprising 10–30 cells is sufficient to engraft adults and generate multiple nephrons. Serial transplantation experiments to test self-renewal revealed that nephron progenitors are long-lived and possess significant replicative potential, consistent with stem-cell activity. Transplantation of mixed nephron progenitors tagged with either green or red fluorescent proteins yielded some mosaic nephrons, indicating that multiple nephron progenitors contribute to a single nephron. Consistent with this, live imaging of nephron formation in transparent larvae showed that nephrogenic aggregates form by the coalescence of multiple cells and then differentiate into nephrons. Taken together, these data demonstrate that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells. The identification of these cells paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.
SummaryKidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied. Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability. To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14. A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development.
Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean age 6 weeks). They also exhibit a block in RBC maturation and abnormally high plasma unesterified-to-total cholesterol ratio (0.8) with associated abnormal lipoprotein morphology (lamellar͞vesicular and stacked discoidal particles reminiscent of those in lecithin͞cholesterol acyltransferase deficiency and cholestasis). Treatment with the lipid-lowering, antiatherosclerosis, and antioxidation drug probucol extended life to as long as 60 weeks (mean 36 weeks), and at 5-6 weeks of age, virtually completely reversed the cardiac and most RBC pathologies and corrected the unesterified to total cholesterol ratio (0.3) and associated distinctive abnormal lipoprotein morphologies. Manipulation of the timing of administration and withdrawal of probucol could control the onset of death and suggested that critical pathological changes usually occurred in untreated double knockout mice between Ϸ3 (weaning) and 5 weeks of age and that probucol delayed heart failure even after development of substantial CHD. The ability of probucol treatment to modulate pathophysiology in the double knockout mice enhances the potential of this murine system for analysis of the pathophysiology of CHD and preclinical testing of new approaches for the prevention and treatment of cardiovascular disease.atherosclerosis ͉ heart failure ͉ myocardial infarction ͉ unesterified cholesterol C oronary artery atherosclerosis is a major cause of myocardial infarction (MI) and death. We have described a murine model of human coronary heart disease (CHD) (1) that is based on targeted homozygous null mutations in two genes whose products play important roles in normal lipoprotein metabolism and protect mice from atherosclerosis: the high-density lipoprotein (HDL) receptor SR-BI (scavenger receptor class B, type I) (2, 3) and the lipoprotein component apolipoprotein E (apoE) (4-7).Low-fat chow-fed, homozygous null, apoE knockout (KO) mice are hypercholesterolemic (4, 5), develop atherosclerosis between 3 and 4 months of age, and usually live a long life (Ͼ1 year), although older animals can sometimes develop coronary artery occlusions and apparently associated pathology (8, 9). SR-BI controls HDL structure and metabolism and appears to be important for ''reverse cholesterol transport,'' HDL-mediated transport of cholesterol from peripheral tissues (including atherosclerotic plaques) to the liver and then to the bile for excretion (2, 3, 10-16). SR-BI delivers cholesteryl esters and other lipids from HDL to cells via selective lipid uptake (2, 3, 10, 17, 18) and can also mediate un...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.