Detection of perchlorate (ClO4-) in several drinking water sources across the U.S. has lead to public concern over health effects from chronic low-level exposures. Perchlorate inhibits thyroid iodide (I-) uptake at the sodium (Na+)-iodide (I-) symporter (NIS), thereby disrupting the initial stage of thyroid hormone synthesis. A physiologically based pharmacokinetic (PBPK) model was developed to describe the kinetics and distribution of both radioactive I- and cold ClO4- in healthy adult humans and simulates the subsequent inhibition of thyroid uptake of radioactive I- by ClO4-. The model successfully predicts the measured levels of serum and urinary ClO4- from drinking water exposures, ranging from 0.007 to 12 mg ClO4-/kg/day, as well as the subsequent inhibition of thyroid 131I- uptake. Thyroid iodine, as well as total, free, and protein-bound radioactive I- in serum from various tracer studies, are also successfully simulated. This model's parameters, in conjunction with corresponding model parameters established for the male, gestational, and lactating rat, can be used to estimate parameters in a pregnant or lactating human, that have not been or cannot be easily measured to extrapolate dose metrics and correlate observed effects in perchlorate toxicity studies to other human life stages. For example, by applying the adult male rat:adult human ratios of model parameters to those parameters established for the gestational and lactating rat, we can derive a reasonable estimate of corresponding parameters for a gestating or lactating human female. Although thyroid hormones and their regulatory feedback are not incorporated in the model structure, the model's successful prediction of free and bound radioactive I- and perchlorate's interaction with free radioactive I- provide a basis for extending the structure to address the complex hypothalamic-pituitary-thyroid feedback system. In this paper, bound radioactive I- refers to I- incorporated into thyroid hormones or iodinated proteins, which may or may not be bound to plasma proteins.
Perchlorate (ClO4(-)) is a drinking-water contaminant, known to disrupt thyroid hormone homeostasis in rats. This effect has only been seen in humans at high doses, yet the potential for long term effects from developmental endocrine disruption emphasizes the need for improved understanding of perchlorate's effect during the perinatal period. Physiologically based pharmacokinetic/dynamic (PBPK/PD) models for ClO4(-) and its effect on thyroid iodide uptake were constructed for human gestation and lactation data. Chemical specific parameters were estimated from life-stage and species-specific relationships established in previously published models for various life-stages in the rat and nonpregnant adult human. With the appropriate physiological descriptions, these kinetic models successfully simulate radioiodide data culled from the literature for gestation and lactation, as well as ClO4(-) data from populations exposed to contaminated drinking water. These models provide a framework for extrapolating from chemical exposure in laboratory animals to human response, and support a more quantitative understanding of life-stage-specific susceptibility to ClO4(-). The pregnant and lactating woman, fetus, and nursing infant were predicted to have higher blood ClO4(-) concentrations and greater thyroid iodide uptake inhibition at a given drinking-water concentration than either the nonpregnant adult or the older child. The fetus is predicted to receive the greatest dose (per kilogram body weight) due to several factors, including placental sodium-iodide symporter (NIS) activity and reduced maternal urinary clearance of ClO4(-). The predicted extent of iodide inhibition in the most sensitive population (fetus) is not significant (approximately 1%) at the U.S. Environmental Protection Agency reference dose (0.0007 mg/kg-d).
Perchlorate (ClO4-), a contaminant in drinking water, competitively inhibits active uptake of iodide (I-) into various tissues, including mammary tissue. During postnatal development, inhibition of I- uptake in the mammary gland and neonatal thyroid and the active concentration ClO4- in milk indicate a potentially increased susceptibility of neonates to endocrine disruption. A physiologically based pharmacokinetic (PBPK) model was developed to reproduce measured ClO4- distribution in the lactating and neonatal rat and predict resulting effects on I- kinetics from competitive inhibition at the sodium iodide symporter (NIS). Kinetic I- and ClO4- behavior in tissues with NIS (thyroid, stomach, mammary gland, and skin) was simulated with multiple subcompartments, Michaelis-Menten (M-M) kinetics and competitive inhibition. Physiological and kinetic parameters were obtained from literature and experiment. Systemic clearance and M-M parameters were estimated by fitting simulations to tissue and serum data. The model successfully describes maternal and neonatal thyroid, stomach, skin, and plasma, as well as maternal mammary gland and milk data after ClO4- exposure (from 0.01 to 10 mg/kg-day ClO4-) and acute radioiodide (2.1 to 33,000 ng/kg I-) dosing. The model also predicts I- uptake inhibition in the maternal thyroid, mammary gland, and milk. Model simulations predict a significant transfer of ClO4- through milk after maternal exposure; approximately 50% to 6% of the daily maternal dose at doses ranging from 0.01 to 10.0 mg ClO4-/kg-day, respectively. Comparison of predicted dosimetrics across life-stages in the rat indicates that neonatal thyroid I- uptake inhibition is similar to the adult and approximately tenfold less than the fetus.
Due to perchlorate's (ClO4-) ability to competitively inhibit thyroid iodide (I-) uptake through the sodium-iodide symporter (NIS), potential human health risks exist from chronic exposure via drinking water. Such risks may include hypothyroidism, goiter, and mental retardation (if exposure occurs during critical periods in neurodevelopment). To aid in predicting perchlorate's effect on normal I- kinetics, we developed a physiologically-based pharmacokinetic (PBPK) model for the adult male rat. The model structure describes simultaneous kinetics for both anions together with their interaction at the NIS, in particular, the inhibition of I- uptake by ClO4-. Subcompartments and Michaelis-Menten (M-M) kinetics were used to describe active uptake of both anions in the thyroid, stomach, and skin. Separate compartments for kidney, liver, plasma, and fat were described by passive diffusion. The model successfully predicts both 36ClO4- and 125I- kinetics after iv doses of 3.3 mg/kg and 33 mg/kg, respectively, as well as inhibition of thyroid 125I- uptake by ClO4- after iv doses of ClO4- (0.01 to 3.0 mg/kg). The model also predicts serum and thyroid ClO4- concentrations from 14-day drinking water exposures (0.01 to 30.0 mg ClO4-/kg/day) and compensation of perchlorate-induced inhibition of radioiodide uptake due to upregulation of the thyroid. The model can be used to extrapolate dose metrics and correlate observed effects in perchlorate toxicity studies to other species and life stages, such as rat gestation (Clewell et al., 2003). Because the model successfully predicts perchlorate's interaction with iodide, it provides a sound basis for future incorporation of the complex hypothalamic-pituitary-thyroid feedback system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.