In this paper, we present an easy-to-follow procedure for the analysis of tissue sections from 3D cell cultures (spheroids) by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) and laser scanning confocal microscopy (LSCM). MALDI MSI was chosen to detect the distribution of the drug of interest, while fluorescence immunohistochemistry (IHC) followed by LSCM was used to localize the cells featuring specific markers of viability, proliferation, apoptosis and metastasis. The overlay of the mass spectrometry (MS) and IHC spheroid images, typically without any morphological features, required fiducial-based coregistration. The MALDI MSI protocol was optimized in terms of fiducial composition and antigen epitope preservation to allow MALDI MSI to be performed and directly followed by IHC analysis on exactly the same spheroid section. Once MS and IHC images were coregistered, the quantification of the MS and IHC signals was performed by an algorithm evaluating signal intensities along equidistant layers from the spheroid boundary to its center. This accurate colocalization of MS and IHC signals showed limited penetration of the clinically tested drug perifosine into spheroids during a 24 h period, revealing the fraction of proliferating and promigratory/proinvasive cells present in the perifosine-free areas, decrease of their abundance in the perifosine-positive regions, and distinguishing between apoptosis resulting from hypoxia/nutrient deprivation and drug exposure.
The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
The existence of diverse image datasets accompanied by reference annotations is a crucial prerequisite for an objective benchmarking of bioimage analysis methods. Nevertheless, such a prerequisite is hard to satisfy for time lapse, multidimensional fluorescence microscopy image data, manual annotations of which are laborious and often impracticable. In this paper, we present a simulation system capable of generating 3-D time-lapse sequences of single motile cells with filopodial protrusions of user-controlled structural and temporal attributes, such as the number, thickness, length, level of branching, and lifetime of filopodia, accompanied by inherently generated reference annotations. The proposed simulation system involves three globally synchronized modules, each being responsible for a separate task: the evolution of filopodia on a molecular level, linear elastic deformation of the entire cell with filopodia, and the synthesis of realistic, time-coherent cell texture. Its flexibility is demonstrated by generating multiple synthetic 3-D time-lapse sequences of single lung cancer cells of two different phenotypes, qualitatively and quantitatively resembling their real counterparts acquired using a confocal fluorescence microscope.
Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.