The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory. This classification provides ways to understand the likelihood of transients for particular systems, and to guide investigations to determine the timing of sudden switches in dynamics and other characteristics of transients. Implications for both management and underlying ecological theories emerge.
One of the most spectacular phenomena in nature is the annual return of millions of salmon to spawn in their natal streams and lakes along the Pacific coast of North America. The salmon die after spawning, and the nutrients and energy in their bodies, derived almost entirely from marine sources, are deposited in the freshwater ecosystems. This represents a vital input to the ecosystems used as spawning grounds. Salmon-derived nutrients make up a substantial fraction of the plants and animals in aquatic and terrestrial habitats associated with healthy salmon populations. The decline of salmon numbers throughout much of their southern range in North America has prompted concern that the elimination of this "conveyor belt" of nutrients and energy may fundamentally change the productivity of these coastal freshwater and terrestrial ecosystems, and consequently their ability to support wildlife, including salmon. If progress is to be made towards understanding and conserving the connection between migratory salmon and coastal ecosystems, scientists and decisionmakers must explore and understand the vast temporal and spatial scales that characterize this relationship.
One of the most spectacular phenomena in nature is the annual return of millions of salmon to spawn in their natal streams and lakes along the Pacific coast of North America. The salmon die after spawning, and the nutrients and energy in their bodies, derived almost entirely from marine sources, are deposited in the freshwater ecosystems. This represents a vital input to the ecosystems used as spawning grounds. Salmon‐derived nutrients make up a substantial fraction of the plants and animals in aquatic and terrestrial habitats associated with healthy salmon populations. The decline of salmon numbers throughout much of their southern range in North America has prompted concern that the elimination of this “conveyor belt” of nutrients and energy may fundamentally change the productivity of these coastal freshwater and terrestrial ecosystems, and consequently their ability to support wildlife, including salmon. If progress is to be made towards understanding and conserving the connection between migratory salmon and coastal ecosystems, scientists and decision‐makers must explore and understand the vast temporal and spatial scales that characterize this relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.