Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacteriumBacillus subtilisdepend on the production of the secreted film-forming protein BslA. Here, we show that a gradient of electron acceptor availability through the depth of the biofilm gives rise to two distinct functional roles for BslA and that these roles can be genetically separated through targeted amino acid substitutions. We establish that monomeric BslA is necessary and sufficient to give rise to complex biofilm architecture, whereas dimerization of BslA is required to render the community hydrophobic. Dimerization of BslA, mediated by disulfide bond formation, depends on two conserved cysteine residues located in the C-terminal region. Our findings demonstrate that bacteria have evolved multiple uses for limited elements in the matrix, allowing for alternative responses in a complex, changing environment.
Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.
The predominant state in which bacteria and archaea live on Earth is in the form of biofilms (Flemming et al., 2016): aggregates of microorganisms embedded in a self-made extracellular matrix. Molecules that can be found in the biofilm matrix include extracellular DNA, exopolysaccharides, lipids and proteins, the latter of which can self-assemble into a variety of functional forms including filaments, films, or fibres (Erskine et al., 2018a). The biofilm matrix conveys 'emergent properties' to the cells in the biofilm (Dragos and Kovacs, 2017) including, but not limited to, providing structure and stability to the community, aiding the sequestration of nutrients and retaining extracellular enzymes which facilitates further processing of the biofilm matrix (Flemming et al., 2016). Biofilm formation by the Gram-positive bacterium Bacillus subtilis has been intensively studied and the production of the molecules in the matrix is known to be highly controlled by a suite of transcription regulators (Cairns et al., 2014). The exopolymeric matrix of the
BslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous proteins can substitute for BslA in B. subtilis and confer a degree of protection, whereas YweA cannot. The degree to which the proteins functionally substitute for native BslA correlates with their in vitro biophysical properties. Our results demonstrate the use of naturally-evolved variants to provide a framework for teasing out the molecular basis of interfacial self-assembly.
Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix the extracellular fibres of TasA are essential. Here a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed byTasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.