Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are widely used models to infer microstructural features in the brain from diffusion-weighted MRI. Several studies have recently applied both models to increase sensitivity to biological changes, however, it remains uncertain how these measures are associated. Here we show that cortical distributions of DTI and NODDI are associated depending on the choice of b-value, a factor reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated with those in NODDI, particularly when applied highly diffusion-weighted data (b-value = 3000 sec/mm 2 ). This was supported by simulation analysis, which revealed that DTI-derived parameters with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction and partial volume. These findings suggest that high b-value DTI redundantly parallels with NODDI-based cortical neurite measures, but the conventional low b-value DTI is hard to reasonably characterize cortical microarchitecture.
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution.Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Purpose To determine the improvement of radiologist efficiency and performance in the detection of bone metastases at serial follow-up computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm. Materials and Methods This retrospective study was approved by the institutional review board, and informed consent was waived. CT image pairs (previous and current scans of the torso) in 60 patients with cancer (primary lesion location: prostate, n = 14; breast, n = 16; lung, n = 20; liver, n = 10) were included. These consisted of 30 positive cases with a total of 65 bone metastases depicted only on current images and confirmed by two radiologists who had access to additional imaging examinations and clinical courses and 30 matched negative control cases (no bone metastases). Previous CT images were semiautomatically registered to current CT images by the algorithm, and TS images were created. Seven radiologists independently interpreted CT image pairs to identify newly developed bone metastases without and with TS images with an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Reading time was recorded, and usefulness was evaluated with subjective scores of 1-5, with 5 being extremely useful and 1 being useless. Significance of these values was tested with the Wilcoxon signed-rank test. Results The subtraction images depicted various types of bone metastases (osteolytic, n = 28; osteoblastic, n = 26; mixed osteolytic and blastic, n = 11) as temporal changes. The average reading time was significantly reduced (384.3 vs 286.8 seconds; Wilcoxon signed rank test, P = .028). The average figure-of-merit value increased from 0.758 to 0.835; however, this difference was not significant (JAFROC analysis, P = .092). The subjective usefulness survey response showed a median score of 5 for use of the technique (range, 3-5). Conclusion TS images obtained from serial CT scans using nonrigid registration successfully depicted newly developed bone metastases and showed promise for their efficient detection. RSNA, 2017 Online supplemental material is available for this article.
1Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are 2 widely used models to infer microstructural features in the brain from diffusion-weighted MRI. 3Several studies have recently applied both models to increase sensitivity to biological changes, 4 however, it remains uncertain how these measures are associated. Here we show that cortical 5 distributions of DTI and NODDI are associated depending on the choice of b-value, a factor 6 reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate 7 and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the 8Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to 9 NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated 10 with those in NODDI, particularly when applied highly diffusion-weighted data (b-value =3000 11 sec/mm 2 ). This was supported by simulation analysis, which revealed that DTI-derived parameters 12 with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction 13 and partial volume. These findings suggest that high b-value DTI redundantly parallels with 14 NODDI-based cortical neurite measures, but the conventional low b-value DTI does not reasonably 15 characterize cortical microarchitecture. 16 17 18
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.