Fetal intrauterine growth restriction (IUGR) is a serious pregnancy complication associated with increased rates of perinatal morbidity and mortality, and ultimately with long-term neurodevelopmental impairments. No intervention currently exists that can improve the structure and function of the IUGR brain before birth. Here, we investigated whether maternal antenatal melatonin administration reduced brain injury in ovine IUGR. IUGR was induced in pregnant sheep at 0.7 gestation and a subset of ewes received melatonin via intravenous infusion until term. IUGR, IUGR + melatonin (IUGR + MLT) and control lambs were born naturally, neonatal behavioral assessment was used to examine neurological function and at 24 hr after birth the brain was collected for the examination of neuropathology. Compared to control lambs, IUGR lambs took significantly longer to achieve normal neonatal lamb behaviors, such as standing and suckling. IUGR brains showed widespread cellular and axonal lipid peroxidation, and white matter hypomyelination and axonal damage. Maternal melatonin administration ameliorated oxidative stress, normalized myelination and rescued axonopathy within IUGR lamb brains, and IUGR + MLT lambs demonstrated significant functional improvements including a reduced time taken to attach to and suckle at the udder after birth. Based on these observations, we began a pilot clinical trial of oral melatonin administration to women with an IUGR fetus. Maternal melatonin was not associated with adverse maternal or fetal effects and it significantly reduced oxidative stress, as evidenced by reduced malondialdehyde levels, in the IUGR + MLT placenta compared to IUGR alone. Melatonin should be considered for antenatal neuroprotective therapy in human IUGR.
Abstract-Macrophage-specific expression of apolipoprotein (apo)E protects against atherosclerosis; however, the signaling and trafficking pathways regulating secretion of apoE are unknown. We investigated the roles of the actin skeleton, microtubules, protein kinase A (PKA) and calcium (Ca 2ϩ ) in regulating apoE secretion from macrophages. Disrupting microtubules with vinblastine or colchicine inhibited basal secretion of apoE substantially, whereas disruption of the actin skeleton had no effect. Structurally distinct inhibitors of PKA (H89, KT5720, inhibitory peptide PKI 14 -22 ) all decreased basal secretion of apoE by between 50% to 80% (PϽ0.01). Pulse-chase experiments demonstrated that inhibition of PKA reduced the rate of apoE secretion without affecting its degradation. Confocal microscopy and live cell imaging of apoE-green fluorescent protein-transfected RAW macrophages identified apoE-green fluorescent protein in vesicles colocalized with the microtubular network, and inhibition of PKA markedly inhibited vesicular movement. Chelation of intracellular calcium ([Ca 2ϩ ] i ) with 1,2-bis(2-aminophenoxy)ethane-N,N,NЈ,NЈ-tetraacetate-acetoxymethyl ester (BAPTA-AM) inhibited apoE secretion by 77.2% (PϽ0.01). Injection of c57Bl6 apoE ϩ/ϩ bone marrow-derived macrophages into the peritoneum of apoE Ϫ/Ϫ C57Bl6 mice resulted in time-dependent secretion of apoE into plasma, which was significantly inhibited by transient exposure of macrophages to BAPTA-AM and colchicine and less effectively inhibited by H89. We conclude that macrophage secretion of apoE occurs via a PKA-and calcium-dependent pathway along the microtubule network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.