Colloidal graphene: Treatment of graphite powder with a series of certain aromatic solvents under sonication leads to the homologous set of colloidal dispersions containing solubilized graphenes (see image).
In this work, two types of mesoporous carbon particles with different morphology, size and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.4 and 5 confirm the pH-responsiveness of the hybrid systems, showing that only small amounts of the cargo are released at physiological pH, whereas at slightly acidic pH (e.g. that of lysosomes) self-immolation takes place and a significant amount of the cargo is released. Cytotoxicity studies using human osteosarcoma cells show that the hybrid nanocarriers are not cytotoxic by themselves but induce significant cell growth inhibition when loaded with a chemotherapeutic drug such as doxorubicin. In preparation of an in vivo application, in
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g−1 at 1 A g−1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg−1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.
The targeted synthesis of metal-organic frameworks (MOFs) with open metal sites, following reticular chemistry rules, provides a straightforward methodology toward the development of advanced porous materials especially for gas storage/separation applications. Using a palladated tetracarboxylate metalloligand as a 4-connected node, we succeeded in synthesizing the first heterobimetallic In(III)/Pd(II)-based MOF with square-octahedron (soc) topology. The new MOF, formulated as [InO(L)(HO)Cl]·n(solv) (1), features the oxo-centered trinuclear clusters, [In(μ-O)(-COO)], acting as trigonal-prismatic 6-connected nodes that linked together with the metalloligand trans-[PdCl(PDC)] (L) (PDC: pyridine-3,5-dicarboxylate) to form a 3D network. After successful activation of 1 using supercritical CO, high-resolution microporous analysis revealed the presence of small micropores (5.8 Å) with BET area of 795 m g and total pore volume of 0.35 cm g. The activated solid shows high gravimetric (92.3 cm g) and volumetric (120.9 cm cm) CO uptake at 273 K and 1 bar as well as high CO/CH (15.4 for a 50:50 molar mixture) and CO/N (131.7 for a 10:90 molar mixture) selectivity, with moderate Q for CO (29.8 kJ mol). Slight modifications of the synthesis conditions led to the formation of a different MOF with an anionic framework, having a chemical formula [MeNH][In(L)]· n(solv) (2). This MOF is constructed from pseudotetrahedral, mononuclear [In(-COO)] nodes bridged by four L linkers, resulting in a 3D network with PtS topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.