Salvia offi cinalis (Lamiaceae) has been used in south of Brazil as a diary homemade, in food condiment and tea-beverage used for the treatment of several disorders. The objective of this study was to characterize chemical compounds in the hydroalcoholic (ExtHS) and aqueous (ExtAS) extract from Salvia offi cinalis (L.) by gas chromatography-mass spectrometry (GC-MS) and by high-resolution electrospray ionization mass spectrometry (ESI-QTOF MS/MS), evaluate in vitro ability to scavenge the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH • ) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS •+ ), catalase (CAT-like) and superoxide dismutase (SOD-like) activity, moreover cytotoxic by MTT assay, alterations on cell morphology by giemsa and apoptotic-induced mechanism for annexin V/propidium iodide. Chemical identifi cation sage extracts revealed the presence of acids and phenolic compounds. In vitro antioxidant analysis for both extracts indicated promising activities. The cytotoxic assays using tumor (Hep-2, HeLa, A-549, HT-29 and A-375) and in non-tumor (HEK-293 and MRC-5), showed selectivity for tumor cell lines. Immunocytochemistry presenting a majority of tumor cells at late stages of the apoptotic process and necrosis. Given the results presented here, Brazilian Salvia offi cinalis (L.) used as condiment and tea, may protect the body against some disease, in particularly those where oxidative stress is involved, like neurodegenerative disorders, infl ammation and cancer.
Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs.
We report here an alternative and tunable metal-free synthesis of benzo[b]chalcogenophenes via the electrophilic cyclization of 2-functionalized chalcogenoalkynes promoted by Oxone®.
We describe here for the first time the synthesis of isochromenones fused to selenophenes. 5H‐Selenopheno[3,2‐c]isochromen‐5‐ones were obtained through a double intramolecular cyclization of methyl 2‐(organyl‐1,3‐diynyl)benzoate promoted by electrophilic species of selenium generated in situ by the reaction of dialkyl diselenides with Oxone®, using ethanol as solvent. The reactions were conducted satisfactorily under mild conditions, using a range of 1,3‐diynes and dialkyl diselenides as substrates. A total of sixteen unprecedent 5H‐selenopheno[3,2‐c]isochromen‐5‐ones were selectively obtained in moderate to good yields (40–86%) under reflux in an open flask and in short reaction times (1.0–2.5 h).magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.