The underwater environment is more and more being depicted as particularly noisy, and the inventory of calling fishes is continuously increasing. However, it currently remains unknown how species share the soundscape and are able to communicate without misinterpreting the messages. Different mechanisms of interference avoidance have been documented in birds, mammals, and frogs, but little is known about interference avoidance in fishes. How fish thus partition the soundscape underwater remains unknown, as acoustic communication and its organization have never been studied at the level of fish communities. In this study, passive acoustic recordings were used to inventory sounds produced in a fish community (120 m depth) in an attempt to understand how different species partition the acoustic environment. We uncovered an important diversity of fish sounds, and 16 of the 37 different sounds recorded were sufficiently abundant to use in a quantitative analysis. We show that sonic activity allows a clear distinction between a diurnal and a nocturnal group of fishes. Moreover, frequencies of signals made during the day overlap, whereas there is a clear distinction between the different representatives of the nocturnal callers because of a lack of overlap in sound frequency. This first demonstration, to our knowledge, of interference avoidance in a fish community can be understood by the way sounds are used. In diurnal species, sounds are mostly used to support visual display, whereas nocturnal species are generally deprived of visual cues, resulting in acoustic constraints being more important.
Phenotypic plasticity has been proposed as a mechanism that facilitates the success of biological invasions. In order to test the hypothesis of an adaptive role for plasticity in invasions, particular attention should be paid to the relationship between the focal plastic trait, the environmental stimulus and the functional importance of the trait. The wing is particularly amenable to experimental studies of phenotypic plasticity. Wing morphology is known for its plastic variation under different experimental temperatures, but this plasticity has rarely been investigated in a functional context of flight. Here, we investigate the effect of temperature on wing morphology and flight in the invasive pest species Although the rapid invasion of both Europe and North America was most likely facilitated by human activities, is also expected to disperse actively. By quantifying wing morphology and individual flight trajectories of flies raised under different temperatures, we tested whether (1) invasive populations of show higher phenotypic plasticity than their native counterparts, and (2) wing plasticity affects flight parameters. Developmental temperature was found to affect both wing morphology and flight parameters (in particular speed and acceleration), leaving open the possibility of an adaptive value for wing plasticity. Our results show no difference in phenotypic plasticity between invasive and native populations, rejecting a role for wing plasticity in the invasion success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.