Locus ceruleus (LC) degeneration and loss of cortical noradrenergic innervation occur early in Alzheimer's disease (AD). Although this has been known for several decades, the contribution of LC degeneration to AD pathogenesis remains unclear. We induced LC degeneration with N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (dsp4) in amyloid precursor protein 23 (APP23) transgenic mice with a low amyloid load. Then 6 months later the LC projection areas showed a robust elevation of glial inflammation along with augmented amyloid plaque deposits. Moreover, neurodegeneration and neuronal loss significantly increased. Importantly, the paraventricular thalamus, a nonprojection area, remained unaffected. Radial arm maze and social partner recognition tests revealed increased memory deficits while high-resolution magnetic resonance imaging-guided micro-positron emission tomography demonstrated reduced cerebral glucose metabolism, disturbed neuronal integrity, and attenuated acetylcholinesterase activity. Nontransgenic mice with LC degeneration were devoid of these alterations. Our data demonstrate that the degeneration of LC affects morphology, metabolism, and function of amyloid plaque-containing higher brain regions in APP23 mice. We postulate that LC degeneration substantially contributes to AD development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.