A combined experimental and theoretical study is presented revealing the influence of metal-molecule coupling on electronic transport through single-molecule junctions. Transport experiments through tolane molecules attached to gold electrodes via thiol, nitro, and cyano anchoring groups are performed. By fitting the experimental current-voltage characteristics to a single-level tunneling model, we extract both the position of the molecular orbital closest to the Fermi energy and the strength of the metal-molecule coupling. The values found for these parameters are rationalized with the help of density-functional-theory-based transport calculations. In particular, these calculations show that the anchoring groups determine the junction conductance by controlling not only the strength of the coupling to the metal but also the position of the relevant molecular energy levels.
We report on the experimental analysis of the charge transport through single-molecule junctions of the open and closed isomers of photoswitching molecules. Sulfur-free diarylethene molecules are developed and studied via electrical and optical measurements as well as density functional theory calculations. The single-molecule conductance and the current-voltage characteristics are measured in a mechanically controlled break-junction system at low temperatures. Comparing the results with the single-level transport model, we find an unexpected behavior of the current-dominating molecular orbital upon isomerization. We show that both the side chains and end groups of the molecules are crucial to understand the charge transport mechanism of photoswitching molecular junctions.
Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.
Organic radicals are promising building blocks for molecular spintronics. Little is known about the role of unpaired electrons for electron transport at the single-molecule level. Here, we examine the impact of magnetic fields on electron transport in single oligo(p-phenyleneethynylene) (OPE)-based radical molecular junctions, which are formed with a mechanically controllable break-junction technique at a low temperature of 4.2 K. Surprisingly huge positive magnetoresistances (MRs) of 16 to 287% are visible for a magnetic field of 4 T, and the values are at least 1 order of magnitude larger than those of the analogous pristine OPE (2-4%). Rigorous analysis of the MR and of current-voltage and inelastic electron-tunneling spectroscopy measurements reveal an effective reduction of the electronic coupling between the current-carrying molecular orbital and the electrodes with increasing magnetic field. We suggest that the large MR for the single-radical molecular junctions might be ascribed to a loss of phase coherence of the charge carriers induced by the magnetic field. Although further investigations are required to reveal the mechanism underlying the strong MR, our findings provide a potential approach for tuning charge transport in metal-molecule junctions with organic radicals.
Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is produced by plants and other phototrophs and its biodegradation is a relevant component of the biogeochemical carbon and sulfur cycles. SQ is known to be degraded by aerobic bacterial consortia in two tiers via C3-organosulfonates as transient intermediates to CO2, water and sulfate. In this study, we present a first laboratory model for anaerobic degradation of SQ by bacterial consortia in two tiers to acetate and hydrogen sulfide (H2S). For the first tier, SQ-degrading Escherichia coli K-12 was used. It catalyzes the fermentation of SQ to 2,3-dihydroxypropane-1-sulfonate (DHPS), succinate, acetate and formate, thus, a novel type of mixed-acid fermentation. It employs the characterized SQ Embden-Meyerhof-Parnas pathway, as confirmed by mutational and proteomic analyses. For the second tier, a DHPS-degrading Desulfovibrio sp. isolate from anaerobic sewage sludge was used, strain DF1. It catalyzes another novel fermentation, of the DHPS to acetate and H2S. Its DHPS desulfonation pathway was identified by differential proteomics and demonstrated by heterologously produced enzymes: DHPS is oxidized via 3-sulfolactaldehyde to 3-sulfolactate (SL) by two NAD+-dependent dehydrogenases (DhpA, SlaB); the SL is cleaved by an SL sulfite-lyase known from aerobic bacteria (SuyAB) to pyruvate and sulfite. The pyruvate is oxidized to acetate, while the sulfite is used as electron acceptor in respiration and reduced to H2S. In conclusion, anaerobic sulfidogenic SQ degradation was demonstrated as a novel link in the biogeochemical sulfur cycle. SQ is also a constituent of the green-vegetable diet of herbivores and omnivores and H2S production in the intestinal microbiome has many recognized and potential contributions to human health and disease. Hence, it is important to examine bacterial SQ degradation also in the human intestinal microbiome, in relation to H2S production, dietary conditions and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.