The dissemination of tumour cells is the prerequisite of metastases and is correlated with a loss of epithelial differentiation and the acquisition of a migratory phenotype, a hallmark of malignant tumour progression. A stepwise, irreversible accumulation of genetic alterations is considered to be the responsible driving force. But strikingly, metastases of most carcinomas recapitulate the organization of their primary tumours. Although current models explain distinct and important aspects of carcinogenesis, each alone can not explain the sum of the cellular changes apparent in human cancer progression. We suggest an extended, integrated model that is consistent with all aspects of human tumour progression - the 'migrating cancer stem (MCS)-cell' concept.
Invasion and dissemination of well-differentiated carcinomas are often associated with loss of epithelial differentiation and gain of mesenchyme-like capabilities of the tumor cells at the invasive front. However, when comparing central areas of primary colorectal carcinomas and corresponding metastases, we again found the same differentiated epithelial growth patterns. These characteristic phenotypic changes were associated with distinct expression patterns of -catenin, the main oncogenic protein in colorectal carcinomas, and E-cadherin. Nuclear -catenin was found in dedifferentiated mesenchyme-like tumor cells at the invasive front, but strikingly, as in central areas of the primary tumors, was localized to the membrane and cytoplasm in polarized epithelial tumor cells in the metastases. This expression pattern was accompanied by changes in E-cadherin expression and proliferative activity. On the basis of these data, we postulate that an important driving force for progression of well-differentiated colorectal carcinomas is the specific environment, initiating two transient phenotypic transition processes by modulating intracellular -catenin distribution in tumor cells.
Cell-type plasticity within a tumor has recently been suggested to cause a bidirectional conversion between tumor-initiating stem cells and nonstem cells triggered by an inflammatory stroma. NF-κB represents a key transcription factor within the inflammatory tumor microenvironment. However, NF-κB's function in tumor-initiating cells has not been examined yet. Using a genetic model of intestinal epithelial cell (IEC)-restricted constitutive Wnt-activation, which comprises the most common event in the initiation of colon cancer, we demonstrate that NF-κB modulates Wnt signaling and show that IEC-specific ablation of RelA/p65 retards crypt stem cell expansion. In contrast, elevated NF-κB signaling enhances Wnt activation and induces dedifferentiation of nonstem cells that acquire tumor-initiating capacity. Thus, our data support the concept of bidirectional conversion and highlight the importance of inflammatory signaling for dedifferentiation and generation of tumor-initiating cells in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.