Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (T) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5CXCR3 antibody-secreting B cell population, CD21CD27 memory B cells, and CD21CD27 B cells. Activation of circulating T cells correlated with the development of both CD21 and CD21 memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8, mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21CD27) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating T cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity.
Influenza A, B and C viruses (IAV, IBV, ICV) circulate globally and infect humans, with IAV/IBV causing most severe disease. While CD8 + T-cells confer cross-protection against different IAV strains, CD8 + T-cell responses to IBV/ICV are understudied. We dissected the CD8 + T-cell cross-reactome against influenza viruses and provided the first evidence of CD8 + T-cell cross-reactivity across IAV, IBV and ICV. Using immunopeptidomics, we identified immunodominant CD8 + T-cell epitopes from IBV, protective in mice, and found prominent memory CD8 + T-cells towards both universal and influenza type-specific epitopes in blood and lungs of healthy humans, with lung-derived CD8 + T-cells displaying a tissue-resident phenotype. Importantly, effector CD38 + Ki67 + CD8 + T-cells against novel epitopes were readily detected in IAV-and IBV-infected pediatric and adult patients. Our study introduces a new paradigm, whereby CD8 + T-cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for designing universal vaccines.
CD8+ T cells recognizing antigenic peptides derived from conserved internal viral proteins confer broad protection against distinct influenza viruses. As memory CD8+ T cells change throughout the human lifetime and across tissue compartments, we investigated how T cell receptor (TCR) composition and diversity relate to memory CD8+ T cells across anatomical sites and immunological phases of human life. We used ex vivo peptide-HLA tetramer magnetic enrichment, single-cell multiplex RT-PCR for both the TCR-alpha (TCRα) and TCR-beta (TCRβ) chains, and new TCRdist and grouping of lymphocyte interactions by paratope hotspots (GLIPH) algorithms to compare TCRs directed against the most prominent human influenza epitope, HLA-A*02:01-M158–66 (A2+M158). We dissected memory TCR repertoires directed toward A2+M158 CD8+ T cells within human tissues and compared them to human peripheral blood of young and elderly adults. Furthermore, we compared these memory CD8+ T cell repertoires to A2+M158 CD8+ TCRs during acute influenza disease in patients hospitalized with avian A/H7N9 virus. Our study provides the first ex vivo comparative analysis of paired antigen-specific TCR-α/β clonotypes across different tissues and peripheral blood across different age groups. We show that human A2+M158 CD8+ T cells can be readily detected in human lungs, spleens, and lymph nodes, and that tissue A2+M158 TCRαβ repertoires reflect A2+M158 TCRαβ clonotypes derived from peripheral blood in healthy adults and influenza-infected patients. A2+M158 TCRαβ repertoires displayed distinct features only in elderly adults, with large private TCRαβ clonotypes replacing the prominent and public TRBV19/TRAV27 TCRs. Our study provides novel findings on influenza-specific TCRαβ repertoires within human tissues, raises the question of how we can prevent the loss of optimal TCRαβ signatures with aging, and provides important insights into the rational design of T cell-mediated vaccines and immunotherapies.
Whilst initial rates of insulin independence following islet transplantation are encouraging, long-term function using the Edmonton Protocol remains a concern. The aim of this single-arm, multicenter study was to evaluate an immunosuppressive protocol of initial antithymocyte globulin (ATG), tacrolimus and mycophenolate mofetil (MMF) followed by switching to sirolimus and MMF. Islets were cultured for 24 h prior to transplantation. The primary end-point was an HbA1c of <7% and cessation of severe hypoglycemia. Seventeen recipients were followed for !12 months. Nine islet preparations were transported interstate for transplantation. Similar outcomes were achieved at all three centers. Fourteen of the 17 (82%) recipients achieved the primary end-point. Nine (53%) recipients achieved insulin independence for a median of 26 months (range 7-39 months) and 6 (35%) remain insulin independent. All recipients were C-peptide positive for at least 3 months. All subjects with unstimulated C-peptide >0.2 nmol/L had cessation of severe hypoglycemia. Nine of the 17 recipients tolerated switching from tacrolimus to sirolimus with similar graft outcomes. There was a small but significant reduction in renal function in the first 12 months. The combination of islet culture, ATG, tacrolimus and MMF is a viable alternative for islet transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.