Rationale: Mechanisms of coronary occlusion in ST-elevation acute coronary syndrome are poorly understood. We have previously reported that neutrophil (polymorphonuclear cells [PMNs]) accumulation in culprit lesion site (CLS) thrombus is a predictor of cardiovascular outcomes. Objective: The goal of this study was to characterize PMN activation at the CLS. We examined the relationships between CLS neutrophil extracellular traps (NETs), bacterial components as triggers of NETosis, activity of endogenous deoxyribonuclease, ST-segment resolution, and infarct size. Methods and Results: We analyzed coronary thrombectomies from 111 patients with ST-elevation acute coronary syndrome undergoing primary percutaneous coronary intervention. Thrombi were characterized by immunostaining, flow cytometry, bacterial profiling, and immunometric and enzymatic assays. Compared with femoral PMNs, CLS PMNs were highly activated and formed aggregates with platelets. Nucleosomes, double-stranded DNA, neutrophil elastase, myeloperoxidase, and myeloid-related protein 8/14 were increased in CLS plasma, and NETs contributed to the scaffolds of particulate coronary thrombi. Copy numbers of Streptococcus species correlated positively with dsDNA. Thrombus NET burden correlated positively with infarct size and negatively with ST-segment resolution, whereas CLS deoxyribonuclease activity correlated negatively with infarct size and positively with ST-segment resolution. Recombinant deoxyribonuclease accelerated the lysis of coronary thrombi ex vivo. Conclusions: PMNs are highly activated in ST-elevation acute coronary syndrome and undergo NETosis at the CLS. Coronary NET burden and deoxyribonuclease activity are predictors of ST-segment resolution and myocardial infarct size.
IMPORTANCECoronary plaques that are prone to rupture and cause adverse cardiac events are characterized by large plaque burden, large lipid content, and thin fibrous caps. Statins can halt the progression of coronary atherosclerosis; however, the effect of the proprotein convertase subtilisin kexin type 9 inhibitor alirocumab added to statin therapy on plaque burden and composition remains largely unknown.OBJECTIVE To determine the effects of alirocumab on coronary atherosclerosis using serial multimodality intracoronary imaging in patients with acute myocardial infarction. DESIGN, SETTING, AND PARTICIPANTSThe PACMAN-AMI double-blind, placebo-controlled, randomized clinical trial (enrollment: May 9, 2017, through October 7, 2020; final follow-up: October 13, 2021) enrolled 300 patients undergoing percutaneous coronary intervention for acute myocardial infarction at 9 academic European hospitals.INTERVENTIONS Patients were randomized to receive biweekly subcutaneous alirocumab (150 mg; n = 148) or placebo (n = 152), initiated less than 24 hours after urgent percutaneous coronary intervention of the culprit lesion, for 52 weeks in addition to high-intensity statin therapy (rosuvastatin, 20 mg).MAIN OUTCOMES AND MEASURES Intravascular ultrasonography (IVUS), near-infrared spectroscopy, and optical coherence tomography were serially performed in the 2 non-infarct-related coronary arteries at baseline and after 52 weeks. The primary efficacy end point was the change in IVUS-derived percent atheroma volume from baseline to week 52. Two powered secondary end points were changes in near-infrared spectroscopy-derived maximum lipid core burden index within 4 mm (higher values indicating greater lipid content) and optical coherence tomography-derived minimal fibrous cap thickness (smaller values indicating thin-capped, vulnerable plaques) from baseline to week 52. RESULTS Among 300 randomized patients (mean [SD] age, 58.5 [9.7] years; 56 [18.7%] women; mean [SD] low-density lipoprotein cholesterol level, 152.4 [33.8] mg/dL), 265 (88.3%) underwent serial IVUS imaging in 537 arteries. At 52 weeks, mean change in percent atheroma volume was −2.13% with alirocumab vs −0.92% with placebo (difference, −1.21% [95% CI, −1.78% to −0.65%], P < .001). Mean change in maximum lipid core burden index within 4 mm was −79.42 with alirocumab vs −37.60 with placebo (difference, −41.24 [95% CI, −70.71 to −11.77]; P = .006). Mean change in minimal fibrous cap thickness was 62.67 μm with alirocumab vs 33.19 μm with placebo (difference, 29.65 μm [95% CI,]; P = .001). Adverse events occurred in 70.7% of patients treated with alirocumab vs 72.8% of patients receiving placebo.CONCLUSIONS AND RELEVANCE Among patients with acute myocardial infarction, the addition of subcutaneous biweekly alirocumab, compared with placebo, to high-intensity statin therapy resulted in significantly greater coronary plaque regression in non-infarct-related arteries after 52 weeks. Further research is needed to understand whether alirocumab improves clinical outcomes ...
IMPORTANCEFewer than 50% of kidney transplant recipients (KTRs) develop antibodies against the SARS-CoV-2 spike protein after 2 doses of an mRNA vaccine. Preliminary data suggest that a heterologous vaccination, combining mRNA and viral vector vaccines, may increase immunogenicity.OBJECTIVE To assess the effectiveness of a third dose of an mRNA vs a vector vaccine in KTRs who did not have antibodies against the SARS-CoV-2 spike protein after 2 doses of an mRNA vaccine. DESIGN, SETTING, AND PARTICIPANTSThis was a single center, single-blinded, 1:1 randomized clinical trial of a third dose of vaccine against SARS-CoV-2, conducted from June 15 to August 16, 2021, in 201 KTRs who had not developed SARS-CoV-2 spike protein antibodies after 2 doses of an mRNA vaccine. Data analyses were performed from August 17 to August 31, 2021.INTERVENTIONS mRNA (BNT162b2 or mRNA-1273) or vector (Ad26COVS1) as a third dose of a SARS-CoV-2 vaccine. MAIN OUTCOMES AND MEASURESThe primary study end point was seroconversion after 4 weeks (29-42 days) following the third vaccine dose. Secondary end points included neutralizing antibodies and T-cell response assessed by interferon-γ release assays (IGRA). In addition, the association of patient characteristics and vaccine response was assessed using logistic regression, and the reactogenicity of the vaccines was compared. RESULTS Among the study population of 197 kidney transplant recipients (mean [SD] age, 61.2 [12.4] years; 82 [42%] women), 39% developed SARS-CoV-2 antibodies after the third vaccine. There was no statistically significant difference between groups, with an antibody response rate of 35% and 42% for the mRNA and vector vaccines, respectively. Only 22% of seroconverted patients had neutralizing antibodies. Similarly, T-cell response assessed by IGRA was low with only 17 patients showing a positive response after the third vaccination. Receiving nontriple immunosuppression (odds ratio [OR], 3.59; 95% CI, 1.33-10.75), longer time after kidney transplant (OR, 1.44; 95% CI, 1.15-1.83, per doubling of years), and torque teno virus plasma levels (OR, 0.92; 95% CI, 0.88-0.96, per doubling of levels) were associated with vaccine response. The third dose of an mRNA vaccine was associated with a higher frequency of local pain at the injection site compared with the vector vaccine, while systemic symptoms were comparable between groups.CONCLUSIONS AND RELEVANCE This randomized clinical trial found that 39% of KTRs without an immune response against SARS-CoV-2 after 2 doses of an mRNA vaccine developed antibodies against the SARS-CoV-2 spike protein 4 weeks after a third dose of an mRNA or a vector vaccine. The heterologous vaccination strategy with a vector-based vaccine was well tolerated and safe but not significantly better than the homologous mRNA-based strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.