Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Mitochondrial sirtuins (Sirts) control important cellular processes related to stress. Despite their regulatory importance, however, the dynamics and subcellular distributions of Sirts remain debatable. Here, we investigate the subcellular localization of sirtuin 4 (Sirt4), a sirtuin variant with a mitochondrial targeting sequence (MTS), by expressing Sirt4 fused to the superfolder green fluorescent protein (Sirt4-sfGFP) in HeLa and pancreatic β-cells. Super resolution fluorescence microscopy revealed the trapping of Sirt4-sfGFP to the outer mitochondrial membrane (OMM), possibly due to slow mitochondrial import kinetics. In many cells, Sirt4-sfGFP was also present within the cytosol and nucleus. Moreover, the expression of Sirt4-sfGFP induced mitochondrial swelling in HeLa cells. In order to bypass these effects, we applied the self-complementing split fluorescent protein (FP) technology and developed mito-STAR (mitochondrial sirtuin 4 tripartite abundance reporter), a tripartite probe for the visualization of Sirt4 distribution between mitochondria and the nucleus in single cells. The application of mito-STAR proved the importation of Sirt4 into the mitochondrial matrix and demonstrated its localization in the nucleus under mitochondrial stress conditions. Moreover, our findings highlight that the self-complementation of split FP is a powerful technique to study protein import efficiency in distinct cellular organelles.
Summary High expression levels of mitochondria-associated hexokinase-II (HKII) represent a hallmark of metabolically highly active cells such as fast proliferating cancer cells. Typically, the enzyme provides a crucial metabolic switch towards aerobic glycolysis. By imaging metabolic activities on the single-cell level with genetically encoded fluorescent biosensors, we here demonstrate that HKII activity requires intracellular K + . The K + dependency of glycolysis in cells expressing HKII was confirmed in cell populations using extracellular flux analysis and nuclear magnetic resonance-based metabolomics. Reductions of intracellular K + by gramicidin acutely disrupted HKII-dependent glycolysis and triggered energy stress pathways, while K + re-addition promptly restored glycolysis-dependent adenosine-5′-triphosphate generation. Moreover, expression and activation of K V 1.3, a voltage-gated K + channel, lowered cellular K + content and the glycolytic activity of HEK293 cells. Our findings unveil K + as an essential cofactor of HKII and provide a mechanistic link between activities of distinct K + channels and cell metabolism.
Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.