Phase selective growth of rhombohedral and cubic indium oxide polytypes was studied. The selective growth of different polytypes was achieved by adjusting substrate temperature and trimethylindium flow rate during metal organic chemical vapor deposition on c-plane sapphire. The optical band gaps of the cubic and rhombohedral phases were determined to be ∼3.7 and ∼3.0eV, respectively. On the basis of the performed structural investigations, a phenomenological model of the nucleation and growth of highly textured cubic In2O3 on Al2O3 (0001) is proposed.
Conventional rigid electronic systems use a number of metallization layers to route all necessary connections to and from isolated surface mount devices using well-established printed circuit board technology. In contrast, present solutions to prepare stretchable electronic systems are typically confined to a single stretchable metallization layer. Crossovers and vertical interconnect accesses remain challenging; consequently, no reliable stretchable printed circuit board (SPCB) method has established. This article reports an industry compatible SPCB manufacturing method that enables multilayer crossovers and vertical interconnect accesses to interconnect isolated devices within an elastomeric matrix. As a demonstration, a stretchable (260%) active matrix with integrated electronic and optoelectronic surface mount devices is shown that can deform reversibly into various 3D shapes including hemispherical, conical or pyramid.
A first automated reel‐to‐reel fluidic selfassembly process for macroelectronic applications is reported. This system enables high‐speed assembly of semiconductor dies (15 000 chips per hour using a 2.5 cm‐wide web) over large‐area substrates. The optimization of the system (>99% assembly yield) is based on identification, calculation, and optimization of the relevant forces. As an application, the production of a solid‐state lighting panel is discussed, involving a novel approach to apply a conductive layer through lamination.
Robust plasmonic nanoantennas at mid-infrared wavelengths are essential components for a variety of nanophotonic applications ranging from thermography to energy conversion. Titanium nitride (TiN) is a promising candidate for such cases due to its high thermal stability and metallic character. Here, we employ direct laser writing as well as interference lithography to fabricate large-area nanoantenna arrays of TiN on sapphire and silicon substrates. Our lithographic tools allow for fast and homogeneous preparation of nanoantenna geometries on a polymer layer, which is then selectively transferred to TiN by subsequent argon ion beam etching followed by a chemical wet etching process. The antennas are protected by an additional Al 2 O 3 layer which allows for high-temperature annealing in argon flow without loss of the plasmonic properties. Tailoring of the TiN antenna geometry enables precise tuning of the plasmon resonances from the near to the mid-infrared spectral range. Due to the advantageous properties of TiN combined with our versatile large-area and low-cost fabrication process, such refractory nanoantennas will enable a multitude of high-temperature plasmonic applications such as thermophotovoltaics in the future.
Wide-bandgap semiconductors represent an attractive option to meet the increasing demands of micro- and nano-electromechanical systems (MEMS/NEMS) by offering new functionalities, high stability, biocompatibility and the potential for miniaturization and integration. Here, we report on resonant MEMS and NEMS devices with functional layers of SiC, AlN and AlGaN/GaN heterostructures on different substrates, which have been investigated and analysed in the course of an interdisciplinary research focus programme of the German Research Foundation (DFG). The specific deposition and etching technologies necessary for the three-dimensional micro-structuring are explained. Further, the implementation of appropriate electromechanical transduction schemes is discussed. In case of SiC and AlN resonators, actuation and sensing was achieved by a magnetomotive scheme. A piezoelectric coupling scheme where the counter electrode is formed by the two-dimensional electron gas at the interface of the III/V heterostructure was realized for the AlGaN/GaN resonators. Thus, flexural and longitudinal vibration modes were excited and characterized using electrical and optical techniques. The measured key parameters of resonant frequency and quality factor are related to geometry, material and environmental parameters using analytical and finite element (FE) models. Finally, potential sensor applications are experimentally investigated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.