SUMMARY
A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma-synchronized (60–80 Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma-synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of inter-areal coherence. The relevant V1 site had its gamma peak frequency 2–3 Hz higher than the irrelevant V1 site, and 4–6 Hz higher than V4. Gamma-mediated inter-areal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity.
Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prostheses should involve both a reliable decoding of the user's intentions and the delivery of nearly "natural" sensory feedback through remnant afferent pathways, simultaneously and in real time. However, current hand prostheses fail to achieve these requirements, particularly because they lack any sensory feedback. We show that by stimulating the median and ulnar nerve fascicles using transversal multichannel intrafascicular electrodes, according to the information provided by the artificial sensors from a hand prosthesis, physiologically appropriate (near-natural) sensory information can be provided to an amputee during the real-time decoding of different grasping tasks to control a dexterous hand prosthesis. This feedback enabled the participant to effectively modulate the grasping force of the prosthesis with no visual or auditory feedback. Three different force levels were distinguished and consistently used by the subject. The results also demonstrate that a high complexity of perception can be obtained, allowing the subject to identify the stiffness and shape of three different objects by exploiting different characteristics of the elicited sensations. This approach could improve the efficacy and "life-like" quality of hand prostheses, resulting in a keystone strategy for the near-natural replacement of missing hands.
Considerable scientific and technological efforts have been devoted to develop neuroprostheses and hybrid bionic systems that link the human nervous system with electronic or robotic prostheses, with the main aim of restoring motor and sensory functions in disabled patients. A number of neuroprostheses use interfaces with peripheral nerves or muscles for neuromuscular stimulation and signal recording. Herein, we provide a critical overview of the peripheral interfaces available and trace their use from research to clinical application in controlling artificial and robotic prostheses. The first section reviews the different types of non-invasive and invasive electrodes, which include surface and muscular electrodes that can record EMG signals from and stimulate the underlying or implanted muscles. Extraneural electrodes, such as cuff and epineurial electrodes, provide simultaneous interface with many axons in the nerve, whereas intrafascicular, penetrating, and regenerative electrodes may contact small groups of axons within a nerve fascicle. Biological, technological, and material science issues are also reviewed relative to the problems of electrode design and tissue injury. The last section reviews different strategies for the use of information recorded from peripheral interfaces and the current state of control neuroprostheses and hybrid bionic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.