Soyabean meal (SBM)-induced enteritis in the distal intestine of the teleost Atlantic salmon (Salmo salar L.) and other salmonids may be considered a model for diet-related mucosal disorders in other animals and man. The role of the intestinal microbiota in its pathogenesis was explored. Compared to diets containing fishmeal (FM) as the sole protein source, responses to extracted SBM or the prebiotic inulin, with or without oxytetracycline (OTC) inclusion, were studied following a 3-week feeding trial. Intestinal microbiota, organosomatic indices and histology, as well as immunohistochemical detection of proliferating cell nuclear antigen (PCNA), heat shock protein 70 (HSP70) and caspase-3-positive cells in the distal intestine, were studied. Distal intestine somatic indices (DISI) were higher in inulin and lower in SBM compared to FM-fed fish. The low DISI caused by SBM corresponded with histological changes, neither of which was affected by OTC, despite a significant decrease in adherent bacteria count. Image analysis of PCNA-stained sections showed a significant increase in the proliferative compartment length in SBM-fed fish, accompanied by apparent increases in reactivity to HSP70 and caspase-3 along the mucosal folds, indicating induction of cellular repair and apoptosis, respectively. Fish fed the SBM diet had higher total number as well as a more diverse population composition of adherent bacteria in the distal intestine. Thus SBM-induced enteritis is accompanied by induction of distal intestinal epithelial cell protective responses and changes in microbiota. Putative involvement of bacteria in the inflammatory response merits further investigation.
To determine the mechanisms of intestinal transport of infection, and early pathogenesis, of sheep scrapie, isolated gut-loops were inoculated to ensure that significant concentrations of scrapie agent would come into direct contact with the relevant ileal structures (epithelial, lymphoreticular, and nervous). Gut loops were inoculated with a scrapie brain pool homogenate or normal brain or sucrose solution. After surgery, animals were necropsied at time points ranging from 15 min to 1 month and at clinical end point. Inoculum-associated prion protein (PrP) was detected by immunohistochemistry in villous lacteals and in sub-mucosal lymphatics from 15 min to 3.5 h post-challenge. It was also detected in association with dendritic-like cells in the draining lymph nodes at up to 24 h post-challenge. Replication of infection, as demonstrated by the accumulation of disease-associated forms of PrP in Peyer's patches, was detected at 30 days and sheep developed clinical signs of scrapie at 18-22 months post-challenge. These results indicate discrepancies between the routes of transportation of PrP from the inoculum and sites of de novo-generated disease-associated PrP subsequent to scrapie agent replication. When samples of homogenized inoculum were incubated with alimentary tract fluids in vitro, only trace amounts of protease-resistant PrP could be detected by western blotting, suggesting that the majority of both normal and abnormal PrP within the inoculum is readily digested by alimentary fluids.
Extracted soybean meal (SBM) in the diet for Atlantic salmon, Salmo salar L., causes an inflammatory response in the distal intestine. The morphological changes of the epithelial cells and a characterization of the inflammatory cell infiltrate of the distal intestinal mucosa were studied using a panel of enzyme and immunohistochemical markers. The salmon (average body weight 927 g) used in the study were fed either a fishmeal‐based diet (control diet) or a diet in which 30% of the fishmeal protein was replaced with SBM protein (SBM diet). In salmon fed SBM, there were markedly reduced enzyme reactivities in the distal intestinal epithelial cells, both in the brush border [5′‐nucleotidase (5′N), Mg2+‐ATPase, alkaline phosphatase (ALP) and leucine aminopeptidase (LAP)] and in the intracellular structures [alkaline and acid phosphatase, non‐specific esterase (NSE) and alanine aminopeptidase (AAP)]. There appeared to be an increased presence of cells of monocytic lineage, including macrophages, as well as neutrophilic granulocytes and immunoglobulin (Ig) M in the lamina propria of the SBM‐fed fish. The mid intestine showed little response to the diet. The results suggest that toxic/antigenic component(s) of SBM affect the differentiation of the distal intestinal epithelial cells and may help explain the reduced nutrient digestibilities previously reported in salmonids fed extracted SBM.
A sensitive immunohistochemical procedure was used to investigate the presence of prion protein (PrP) in the ileal Peyer's patch of PrP-genotyped lambs, including scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. The tyramide signal amplification system was used to enhance the sensitivity of conventional immunohistochemical procedures to show that PrP was widely distributed in the enteric nervous plexus supplying the gut wall. In scrapie-free lambs, PrP was also detected in scattered cells in the lamina propria and in the dome and interfollicular areas of the Peyer's patch. In the follicles, staining for PrP was mainly confined to the capsule and cells associated with vascular structures in the light central zone. In lambs naturally exposed to the scrapie agent, staining was prominent in the dome and neck region of the follicles and was also found to be associated with the follicle-associated epithelium. Similar observations were made in lambs that had received a single oral dose of scrapie-infected brain material from sheep with a homologous and heterologous PrP genotype 1 and 5 weeks previously. These studies show that the ileal Peyer's patch in young sheep may be an important site of uptake of the scrapie agent and that the biology of this major gut-associated lymphoid tissue may influence the susceptibility to oral infection in sheep. Furthermore, these studies suggest that homology or heterology between PrP genotypes or the presence of PrP genotypes seldom associated with disease does not impede uptake of PrP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.