Bottom-up synthesis of low-bandgap graphene nanoribbons with various widths is of great importance for their applications in electronic and optoelectronic devices. Here we demonstrate a synthesis of N = 5 armchair graphene nanoribbons (5-AGNRs) and their lateral fusion into wider AGNRs, by a chemical vapor deposition method. The efficient formation of 10- and 15-AGNRs is revealed by a combination of different spectroscopic methods, including Raman and UV–vis-near-infrared spectroscopy as well as by scanning tunneling microscopy. The degree of fusion and thus the optical and electronic properties of the resulting GNRs can be controlled by the annealing temperature, providing GNR films with optical absorptions up to ∼2250 nm.
Graphene nanoribbons (GNRs) have attracted a strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges towards their exploitation in electronic applications include reliable contacting, complicated by their small size (< 50 nm), as well as the preservation of their physical properties upon device integration.In this combined experimental and theoretical study, we report on the quantum dot (QD) behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned 5-atoms wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5-nm nanogap. We demonstrate that the narrow-bandgap 5-AGNRs exhibit metal-like behavior resulting in linear IV curves for low bias voltages at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNRs is accounted for. By demonstrating the preservation of the 5-AGNRs electronic properties upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realisation of more exotic GNR-based nano-electronic devices.
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) based on single ribbons.Despite great progress, reliable and reproducible fabrication of single-ribbon FETs is still a challenge that impedes applications and the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on a network of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atomwide GNRs with unprecedented conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs on the electrodes.Modeling the charge carrier transport in the networks reveals that this process is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical length of the GNRs. Furthermore, we demonstrate that nuclear tunneling is a general charge transport characteristic of the GNR networks by using two different GNRs. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism puts GNR-based electronics in a new perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.