BackgroundThe glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity.Scope of reviewIn this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases.Major conclusionsSince its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders
Adipose tissue usually is classified as either white, brown or beige/brite, based on whether it functions as an energy storage or thermogenic organ (Cannon and Nedergaard, 2004;Rosen and Spiegelman, 2014). It serves as an important regulator of systemic metabolism, exemplified by the fact that dysfunctional adipose tissue in obesity leads to a host of secondary metabolic complications such as diabetes, cardiovascular diseases and cancer (Hajer et al., 2008;Lauby-Secretan et al., 2016). In addition, adipose tissue is an important endocrine organ, which regulates the function of other metabolic tissues through paracrine and endocrine signals (Scheele and Wolfrum, 2019;Scherer, 2006). Work in recent years has demonstrated that tissue heterogeneity is an important factor regulating the functionality of various organs (Cao et al., 2017;Ginhoux et al., 2016;Park et al., 2018). Here we used single nucleus analysis in mice and men to deconvolute adipocyte heterogeneity. We are able to identify a novel subpopulation of adipocytes whose abundance is low in mice (2-8%) and which is increased under higher ambient temperatures. Interestingly, this population is abundant in humans who live close to thermoneutrality. We demonstrate that this novel adipocyte subtype functions as a paracrine cell regulating the activity of brown adipocytes through acetate-mediated regulation of thermogenesis. These findings could explain, why human brown adipose tissue is substantially less active than mouse tissue and targeting this pathway in humans might be utilized to restore thermogenic activity of this tissue..
Objectives5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mechanism through which EC cells sense nutrients and gut microbiota is still unclear.Methods and resultsTPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC cells from the small intestine did not express GPCR sensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1 (TGR5), CaSR, and GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and enriched in EC cells as judged both by qPCR and by immunohistochemistry using a receptor antibody. GLP-1 receptor agonists robustly stimulated 5-HT secretion from intestinal preparations using both HPLC and a specific amperometric method. Colonic EC cells expressed many different types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132.ConclusionNutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites generated by the gut microbiota as well as gut hormones, including GLP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.