Background Long noncoding RNAs (lncRNAs) have emerged as critical players in cancer progression, but their functions in colorectal cancer (CRC) metastasis have not been systematically clarified. Methods lncRNA expression profiles in matched normal and CRC tissue were checked using microarray analysis. The biological roles of a novel lncRNA, namely RP11-138 J23.1 (RP11), in development of CRC were checked both in vitro and in vivo. Its association with clinical progression of CRC was further analyzed. Results RP11 was highly expressed in CRC tissues, and its expression increased with CRC stage in patients. RP11 positively regulated the migration, invasion and epithelial mesenchymal transition (EMT) of CRC cells in vitro and enhanced liver metastasis in vivo. Post-translational upregulation of Zeb1, an EMT-related transcription factor, was essential for RP11-induced cell dissemination. Mechanistically, the RP11/hnRNPA2B1/mRNA complex accelerated the mRNA degradation of two E3 ligases, Siah1 and Fbxo45, and subsequently prevented the proteasomal degradation of Zeb1. m 6 A methylation was involved in the upregulation of RP11 by increasing its nuclear accumulation. Clinical analysis showed that m 6 A can regulate the expression of RP11, further, RP11 regulated Siah1-Fbxo45/Zeb1 was involved in the development of CRC. Conclusions m 6 A-induced lncRNA RP11 can trigger the dissemination of CRC cells via post-translational upregulation of Zeb1. Considering the high and specific levels of RP11 in CRC tissues, our present study paves the way for further investigations of RP11 as a predictive biomarker or therapeutic target for CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1014-2) contains supplementary material, which is available to authorized users.
TNM staging system of gastric cancer (GC) is not adequate for definition of prognosis and cannot predict the candidates who are likely to benefit from chemotherapy. In this research, we constructed a GC-SVM classifier integrating 3 clinicopathologic features and 8 IHC features in the training cohort of 251 patients. And further validation of the GC-SVM classifier was performed in two validation cohort of 535 patients.Multivariate analysis revealed that the GC-SVM classifier was an independent prognostic factor. Furthermore, the classifier had higher predictive accuracy for OS and DFS than TNM stage and can added prognostic value to the TNM staging system. Moreover, the GC-SVM classifier might be able to predict which patients will benefit from adjuvant chemotherapy. Thus, the classifier could facilitate patient counseling and individualized management. Conclusion:The newly developed GC-SVM classifier was a powerful predictor of OS and DFS. Moreover, the GC-SVM classifier could predict which patients with stage II and III GC benefit from adjuvant chemotherapy.
Background Increasing studies have shown that long noncoding RNAs (lncRNAs) are pivotal regulators participating in carcinogenic progression and tumor metastasis in colorectal cancer (CRC). Although lncRNA long intergenic noncoding RNA 460 (LINC00460) has been reported in CRC, the role and molecular mechanism of LINC00460 in CRC progression still requires exploration. Methods The expression levels of LINC00460 were analyzed by using a tissue microarray containing 498 CRC tissues and their corresponding non-tumor adjacent tissues. The correlations between the LINC00460 expression level and clinicopathological features were evaluated. The functional characterization of the role and molecular mechanism of LINC00460 in CRC was investigated through a series of in vitro and in vivo experiments. Results LINC00460 expression was increased in human CRC, and high LINC00460 expression was correlated with poor five-year overall survival and disease-free survival. LINC00460 overexpression sufficiently induced the epithelial–mesenchymal transition and promoted tumor cell proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. In addition, LINC00460 enhanced the protein expression of high-mobility group AT-hook 1 (HMGA1) by directly interacting with IGF2BP2 and DHX9 to bind the 3′ untranslated region (UTR) of HMGA1 mRNA and increased the stability of HMGA1 mRNA. In addition, the N6-methyladenosine (m6A) modification of HMGA1 mRNA by METTL3 enhanced HMGA1 expression in CRC. Finally, it suggested that HMGA1 was essential for LINC00460-induced cell proliferation, migration, and invasion. Conclusions LINC00460 may be a novel oncogene of CRC through interacting with IGF2BP2 and DHX9 and bind to the m6A modified HMGA1 mRNA to enhance the HMGA1 mRNA stability. LINC00460 can serve as a promising predictive biomarker for the diagnosis and prognosis among patients with CRC.
Rationale: Peritoneal metastasis predicts poor prognosis of gastric cancer (GC) patients, and the underlying mechanisms are poorly understood. Methods: The 2-DIGE, MALDI-TOF/TOF MS and single-cell transcriptome were used to detect differentially expressed proteins among normal gastric mucosa, primary GC and peritoneal metastatic tissues. Lentiviruses carrying shRNA and transcription activator-like effector nuclease technology were used to knock down myosin heavy chain 9 (MYH9) expression in GC cell lines. Immunofluorescence, immune transmission electron microscopy, chromatin fractionation, co-immunoprecipitation, and assays for chromatin immunoprecipitation, dual luciferase reporter, agarose-oligonucleotide pull-down, flow cytometry and cell anoikis were performed to uncover nuclear MYH9-induced β-catenin ( CTNNB1 ) transcription in vitro . Nude mice and conditional transgenic mice were used to investigate the findings in vivo . Results: We observed that MYH9 was upregulated in metastatic GC tissues and was associated with a poor prognosis of GC patients. Mechanistically, we confirmed that MYH9 was mainly localized in the GC cell nuclei by four potential nuclear localization signals. Nuclear MYH9 bound to the CTNNB1 promoter through its DNA-binding domain, and interacted with myosin light chain 9, β-actin and RNA polymerase II to promote CTNNB1 transcription, which conferred resistance to anoikis in GC cells in vitro and in vivo . Staurosporine reduced nuclear MYH9 S1943 phosphorylation to inhibit CTNNB1 transcription, Wnt/β-catenin signaling activation and GC progression in both orthotropic xenograft GC nude mouse and transgenic GC mouse models. Conclusion: This study identified that nuclear MYH9-induced CTNNB1 expression promotes GC metastasis, which could be inhibited by staurosporine, indicating a novel therapy for GC peritoneal metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.