Outstanding magnetic properties are highly desired for two-dimensional ultrathin semiconductor nanosheets. Here, we propose a phase incorporation strategy to induce robust room-temperature ferromagnetism in a nonmagnetic MoS2 semiconductor. A two-step hydrothermal method was used to intentionally introduce sulfur vacancies in a 2H-MoS2 ultrathin nanosheet host, which prompts the transformation of the surrounding 2H-MoS2 local lattice into a trigonal (1T-MoS2) phase. 25% 1T-MoS2 phase incorporation in 2H-MoS2 nanosheets can enhance the electron carrier concentration by an order, introduce a Mo(4+) 4d energy state within the bandgap, and create a robust intrinsic ferromagnetic response of 0.25 μB/Mo by the exchange interactions between sulfur vacancy and the Mo(4+) 4d bandgap state at room temperature. This design opens up new possibility for effective manipulation of exchange interactions in two-dimensional nanostructures.
Titanium dioxide nanoparticles were prepared via a photoassisted sol-gel method in which ultraviolet light irradiation was used in the preparation process of TiO2 colloid. After characterization by X-ray diffraction, X-ray absorption near-edge structure (XANES) at the Ti K-edge, laser Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, it was found that the amorphous titania nanoparticles prepared by a photoassisted sol-gel method can be transformed into crystalline anatase phase at lower calcination temperature compared to those prepared by a conventional sol-gel method. In addition, the particle size distribution of anatase powder samples is also affected by UV illumination on the colloid. It is suggested that UV illumination can induce the formation of oxygen vacancies on the colloid and this results in the accelerated phase transition from amorphous to anatase titania.
Uncovering the dynamics of active sites in the working conditions is crucial to realizing increased activity, enhanced stability and reduced cost of oxygen evolution reaction (OER) electrocatalysts in proton exchange membrane electrolytes. Herein, we identify at the atomic level potential-driven dynamic-coupling oxygen on atomically dispersed hetero-nitrogen-configured Ir sites (AD-HN-Ir) in the OER working conditions to successfully provide the atomically dispersed Ir electrocatalyst with ultrahigh electrochemical acidic OER activity. Using in-situ synchrotron radiation infrared and X-ray absorption spectroscopies, we directly observe that one oxygen atom is formed at the Ir active site with an O-hetero-Ir-N4 structure as a more electrophilic active centre in the experiment, which effectively promotes the generation of key *OOH intermediates under working potentials; this process is favourable for the dissociation of H2O over Ir active sites and resistance to over-oxidation and dissolution of the active sites. The optimal AD-HN-Ir electrocatalyst delivers a large mass activity of 2860 A gmetal−1 and a large turnover frequency of 5110 h−1 at a low overpotential of 216 mV (10 mA cm−2), 480–510 times larger than those of the commercial IrO2. More importantly, the AD-HN-Ir electrocatalyst shows no evident deactivation after continuous 100 h OER operation in an acidic medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.