Chinese Clinical Trial Registry: ChiCTR-TRC-13004097.
To investigate the effect of antidiabetic agents on nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM), 75 patients with T2DM and NAFLD under inadequate glycemic control by metformin were randomized (1:1:1) to receive add‐on liraglutide, sitagliptin, or insulin glargine in this 26‐week trial. The primary endpoint was the change in intrahepatic lipid (IHL) from baseline to week 26 as quantified by magnetic resonance imaging–estimated proton density fat fraction (MRI‐PDFF). Secondary endpoints included changes in abdominal adiposity (subcutaneous adipose tissue [SAT] and visceral adipose tissue [VAT]), glycated hemoglobin, and body weight from baseline to week 26. We analysed data from intent‐to‐treat population. MRI‐PDFF, VAT, and weight decreased significantly with liraglutide (15.4% ± 5.6% to 12.5% ± 6.4%, P < 0.001; 171.4 ± 27.8 to 150.5 ± 30.8, P = 0.003; 86.6 ± 12.9 kg to 82.9 ± 11.1 kg, P = 0.005, respectively) and sitagliptin (15.5% ± 5.6% to 11.7% ± 5.0%, P = 0.001; 153.4 ± 31.5 to 139.8 ± 27.3, P = 0.027; 88.2 ± 13.6 kg to 86.5 ± 13.2 kg, P = 0.005, respectively). No significant change in MRI‐PDFF, VAT, or body weight was observed with insulin glargine. SAT decreased significantly in the liraglutide group (239.9 ± 69.0 to 211.3 ± 76.1; P = 0.020) but not in the sitagliptin and insulin glargine groups. Changes from baseline in MRI‐PDFF, VAT, and body weight were significantly greater with liraglutide than insulin glargine but did not differ significantly between liraglutide and sitagliptin. Conclusion: Combined with metformin, both liraglutide and sitagliptin, but not insulin glargine, reduced body weight, IHL, and VAT in addition to improving glycemic control in patients with T2DM and NAFLD.
Background There is a paucity of global data on cardiovascular disease (CVD) prevalence in people with type 2 diabetes (T2D). The primary objective of the CAPTURE study was to estimate the prevalence of established CVD and its management in adults with T2D across 13 countries from five continents. Additional objectives were to further characterize the study sample regarding demographics, clinical parameters and medication usage, with particular reference to blood glucose-lowering agents (GLAs: glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors) with demonstrated cardiovascular benefit in randomized intervention trials. Methods Data were collected from adults with T2D managed in primary or specialist care in Australia, China, Japan, Czech Republic, France, Hungary, Italy, Argentina, Brazil, Mexico, Israel, Kingdom of Saudi Arabia, and Turkey in 2019, using standardized methodology. CVD prevalence, weighted by diabetes prevalence in each country, was estimated for the overall CAPTURE sample and participating countries. Country-specific odds ratios for CVD prevalence were further adjusted for relevant demographic and clinical parameters. Results The overall CAPTURE sample included 9823 adults with T2D (n = 4502 from primary care; n = 5321 from specialist care). The overall CAPTURE sample had median (interquartile range) diabetes duration 10.7 years (5.6–17.9 years) and glycated hemoglobin 7.3% (6.6–8.4%) [56 mmol/mol (49–68 mmol/mol)]. Overall weighted CVD and atherosclerotic CVD prevalence estimates were 34.8% (95% confidence interval [CI] 32.7–36.8) and 31.8% (95% CI 29.7–33.8%), respectively. Age, gender, and clinical parameters accounted for some of the between-country variation in CVD prevalence. GLAs with demonstrated cardiovascular benefit were used by 21.9% of participants, which was similar in participants with and without CVD: 21.5% and 22.2%, respectively. Conclusions In 2019, approximately one in three adults with T2D in CAPTURE had diagnosed CVD. The low use of GLAs with demonstrated cardiovascular benefit even in participants with established CVD suggested that most were not managed according to contemporary diabetes and cardiology guidelines. Study registration NCT03786406 (registered on December 20, 2018), NCT03811288 (registered on January 18, 2019).
Aims/hypothesis Human patients with aniridia caused by heterozygous PAX6 mutations display abnormal glucose metabolism, but the underlying molecular mechanism is largely unknown. Disturbed islet architecture has been proposed as the reason why mice with complete inactivation of paired box 6 (PAX6) in the pancreas develop diabetes. This is not, however, the case in human aniridia patients with heterozygous PAX6 deficiency and no apparent defects in pancreatic development. We investigated the molecular mechanism underlying the development of abnormal glucose metabolism in these patients. Methods A human aniridia pedigree with a PAX6 R240Stop mutation was examined for abnormal glucose metabolism using an OGTT. The underlying mechanism was further investigated using Pax6 R266Stop mutant small-eye mice, which also have abnormal glucose metabolism similar to that in PAX6 R240Stop mutation human aniridia patients. Results Paired box 6 (PAX6) deficiency, both in aniridia patients with a heterozygous PAX6 R240Stop mutation and in mice with a heterozygous Pax6 R266Stop mutation, causes defective proinsulin processing and abnormal glucose metabolism. PAX6 can bind to the promoter and directly upregulate production of prohormone convertase (PC)1/3, an enzyme essential for conversion of proinsulin to insulin. Pax6 mutations lead to PC1/3 deficiency, resulting in defective proinsulin processing and abnormal glucose metabolism. Conclusions/interpretation This study indicates a novel function for PAX6 in the regulation of proinsulin processing and glucose metabolism via modulation of PC1/3 Diabetologia
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.