Plasmon-induced hot-electron transfer from metal nanostructures is a potential new paradigm for solar energy conversion; however, the reported efficiencies of devices based on this concept are often low because of the loss of hot electrons via ultrafast electron-electron scattering. We propose a pathway, called the plasmon-induced interfacial charge-transfer transition (PICTT), that enables the decay of a plasmon by directly exciting an electron from the metal to a strongly coupled acceptor. We demonstrated this concept in cadmium selenide nanorods with gold tips, in which the gold plasmon was strongly damped by cadmium selenide through interfacial electron transfer. The quantum efficiency of the PICTT process was high (>24%), independent of excitation photon energy over a ~1-electron volt range, and dependent on the excitation polarization.
Recently reported colloidal lead halide perovskite quantum dots (QDs) with tunable photoluminescence (PL) wavelengths covering the whole visible spectrum and exceptionally high PL quantum yields (QYs, 50-90%) constitute a new family of functional materials with potential applications in light-harvesting and -emitting devices. By transient absorption spectroscopy, we show that the high PL QYs (∼79%) can be attributed to negligible electron or hole trapping pathways in CsPbBr3 QDs: ∼94% of lowest excitonic states decayed with a single-exponential time constant of 4.5 ± 0.2 ns. Furthermore, excitons in CsPbBr3 QDs can be efficiently dissociated in the presence of electron or hole acceptors. The half-lives of electron transfer (ET) to benzoquinone and subsequent charge recombination are 65 ± 5 ps and 2.6 ± 0.4 ns, respectively. The half-lives for hole transfer (HT) to phenothiazine and the subsequent charge recombination are 49 ± 6 ps and 1.0 ± 0.2 ns, respectively. The lack of electron and hole traps and fast interfacial ET and HT rates are key properties that may enable the development of efficient lead halide perovskite QDs-based light-harvesting and -emitting devices.
Semiconductor-metal nanoheterostructures, such as CdSe/CdS dot-in-rod nanorods with a Pt tip at one end (or CdSe/CdS-Pt), are promising materials for solar-to-fuel conversion because they allow rational integration of a light absorber, hole acceptor, and electron acceptor or catalyst in an all-inorganic triadic heterostructure as well as systematic control of relative energetics and spatial arrangement of the functional components. To provide design principles of such triadic nanorods, we examined the photocatalytic H2 generation quantum efficiency and the rates of elementary charge separation and recombination steps of CdSe/CdS-Pt and CdS-Pt nanorods. We showed that the steady-state H2 generation quantum efficiencies (QEs) depended sensitively on the electron donors and the nanorods. Using ultrafast transient absorption spectroscopy, we determined that the electron transfer efficiencies to the Pt tip were near unity for both CdS and CdSe/CdS nanorods. Hole transfer rates to the electron donor, measured by time-resolved fluorescence decay, were positively correlated with the steady-state H2 generation QEs. These results suggest that hole transfer is a key efficiency-limiting step. These insights provide possible ways for optimizing the hole transfer step to achieve efficient solar-to-fuel conversion in semiconductor-metal nanostructures.
We have used femtosecond pump-probe spectroscopy to time resolve the injection of electrons into nanocrystalline TiO 2 film electrodes under ambient conditions following photoexcitation of the adsorbed dye, [Ru(4,4′-dicarboxy-2,2′-bipyridine) 2 (NCS) 2 ] (N3). Pumping at one of the metal-to-ligand charge-transfer absorption peaks and probing the absorption by injected electrons in the TiO 2 at 1.52 µm and in the range of 4.1-7.0 µm, we have directly observed the arrival of electrons injected into the TiO 2 film. Our measurements indicate an instrument-limited ∼50 fs upper limit on the electron injection time. We have compared the infrared transient absorption for noninjecting systems consisting of N3 in ethanol and N3 adsorbed to films of nanocrystalline Al 2 O 3 and ZrO 2 and found no indication of electron injection at probe wavelengths in the mid-IR (4.1-7.0 µm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.