The microenvironment of the cochlea is maintained by the barrier between the systemic circulation and the fluids inside the stria vascularis. However, the mechanisms that control the permeability of the intrastrial fluid-blood barrier remain largely unknown. The barrier comprises endothelial cells connected to each other by tight junctions and an underlying basement membrane. In a recent study, we found that the intrastrial fluid-blood barrier also includes a large number of perivascular cells with both macrophage and melanocyte characteristics. The perivascular-resident macrophage-like melanocytes (PVM/Ms) are in close contact with vessels through cytoplasmic processes. Here we demonstrate that PVM/Ms have an important role in maintaining the integrity of the intrastrial fluid-blood barrier and hearing function. Using a cell culture-based in vitro model and a genetically induced PVM/M-depleted animal model, we show that absence of PVM/Ms increases the permeability of the intrastrial fluid-blood barrier to both lowand high-molecular-weight tracers. The increased permeability is caused by decreased expression of pigment epithelial-derived factor, which regulates expression of several tight junction-associated proteins instrumental to barrier integrity. When tested for endocochlear potential and auditory brainstem response, PVM/ M-depleted animals show substantial drop in endocochlear potential with accompanying hearing loss. Our results demonstrate a critical role for PVM/Ms in regulating the permeability of the intrastrial fluid-blood barrier for establishing a normal endocochlear potential hearing threshold. mouse cochlea | paracellular permeability | tight junction | capillary T he intrastrial fluid-blood barrier separates the stria vascularis (SV) from peripheral circulation. The integrity of the barrier is critical for maintaining inner ear homeostasis, especially for sustaining the endocochlear potential (EP), an essential driving force for hearing function (1-4). Disruption of the barrier is closely associated with a number of hearing disorders, including autoimmune inner ear disease, noise-induced hearing loss, agerelated hearing loss, and several genetically linked diseases (5-10). Despite the importance of the intrastrial fluid-blood barrier, little is understood about regulation of the barrier and the mechanisms that control its permeability.In the classic view, the intrastrial fluid-blood barrier comprises basement membrane and endothelial cells (ECs) that connect to each other with tight junctions (11) to form a diffusion barrier that prevents most blood-borne substances from entering the ear (2). In a recent study, we found that the intrastrial fluid-blood barrier also includes a large number of pericytes and perivascular-resident macrophage-like melanocytes (PVM/Ms) (12, 13). The PVM/Ms are not observed in other capillary regions such as in capillary beds of the spiral ligament. The PVM/Ms are in close contact with vessels through cytoplasmic processes. The structural complexity of PVM/Ms' capillar...
Thyroid hormone is necessary for cochlear development and auditory function, but the factors that control these processes are poorly understood. Previous evidence indicated that in mice, the serum supply of thyroid hormone is augmented within the cochlea itself by type 2 deiodinase, which amplifies the level of T(3), the active form of thyroid hormone, before the onset of hearing. We now report that type 3 deiodinase, a thyroid hormone-inactivating enzyme encoded by Dio3, is expressed in the immature cochlea before type 2 deiodinase. Dio3-/- mice display auditory deficits and accelerated cochlear differentiation, contrasting with the retardation caused by deletion of type 2 deiodinase. The Dio3 mRNA expression pattern in the greater epithelial ridge, stria vascularis, and spiral ganglion partly overlaps with that of thyroid hormone receptor beta (TRbeta), the T(3) receptor that is primarily responsible for auditory development. The proposal that type 3 deiodinase prevents premature stimulation of TRbeta was supported by deleting TRbeta, which converted the Dio3-/- cochlear phenotype from one of accelerated to one of delayed differentiation. The results indicate a protective role for type 3 deiodinase in hearing. The auditory system illustrates the considerable extent to which tissues can autoregulate their developmental response to thyroid hormone through both type 2 and 3 deiodinases.
During sound stimulation, receptor potentials are generated within the sensory hair cells of the cochlea. Prevailing theory states that outer hair cells use the potential-sensitive motor protein prestin to convert receptor potentials into fast alterations of cellular length or stiffness that boost hearing sensitivity almost 1000-fold. However, receptor potentials are attenuated by the filter formed by the capacitance and resistance of the membrane of the cell. This attenuation would limit cellular motility at high stimulus frequencies, rendering the above scheme ineffective. Therefore, Dallos and Evans (1995a) proposed that extracellular potential changes within the organ of Corti could drive cellular motor proteins. These extracellular potentials are not filtered by the membrane. To test this theory, both electric potentials inside the organ of Corti and basilar membrane vibration were measured in response to acoustic stimulation. Vibrations were measured at sites very close to those interrogated by the recording electrode using laser interferometry. Close comparison of the measured electrical and mechanical tuning curves and time waveforms and their phase relationships revealed that those extracellular potentials indeed could drive outer hair cell motors. However, to achieve the sharp frequency tuning that characterizes the basilar membrane, additional mechanical processing must occur inside the organ of Corti.
Capsaicin, the vanilloid that selectively activates vanilloid receptors (VRs) on sensory neurons for noxious perception, has been reported to increase cochlear blood flow (CBF). VR-related receptors have also been found in the inner ear. This study aims to address the question as to whether VRs exist in the organ of Corti and play a role in cochlear physiology. Capsaicin or the more potent VR agonist, resiniferatoxin (RTX), was infused into the scala tympani of guinea pig cochlea, and their effects on cochlear sensitivity were investigated. Capsaicin (20 microM) elevated the threshold of auditory nerve compound action potential and reduced the magnitude of cochlear microphonic and electrically evoked otoacoustic emissions. These effects were reversible and could be blocked by a competitive antagonist, capsazepine. Application of 2 microM RTX resulted in cochlear sensitivity alterations similar to that by capsaicin, which could also be blocked by capsazepine. A desensitization phenomenon was observed in the case of prolonged perfusion with either capsaicin or RTX. Brief increase of CBF by capsaicin was confirmed, and the endocochlear potential was not decreased. Basilar membrane velocity (BM) growth functions near the best frequency and BM tuning were altered by capsaicin. Immunohistochemistry study revealed the presence of vanilloid receptor type 1 of the transient receptor potential channel family in the hair cells and supporting cells of the organ of Corti and the spiral ganglion cells of the cochlea. The results indicate that the main action of capsaicin is on outer hair cells and suggest that VRs in the cochlea play a role in cochlear homeostasis.
Background Lung cancer has the highest fatality rate of all cancer types. To improve patients’ survival and life quality, it is therefore very important to screen for and detect it at an early stage. Methods A negative enrichment–fluorescence in situ hybridization (NE‐FISH) approach was used to detect circulating tumor cells (CTCs) in lung cancer patients, and levels of lung cancer‐associated serum markers were also measured in the peripheral blood of these same patients. The correlation between CTCs, serum cancer markers (carcinoembryonic antigen [CEA], CA 125, CYFRA 21‐1, and SCC), and clinicopathological characteristics was then investigated. Moreover, the potential clinical use of the combination of CTCs and tumor markers for the diagnosis of lung cancer, especially at early stages, was also explored. Results CTC frequencies in lung cancer patients were significantly higher than in healthy control volunteers or patients with benign lung disease, and the area under the receiver operating characteristics curve for the control group was 0.846 (95% CI 0.796‐0.887, P < 0.001). The rate of CTC positivity in lung cancer patients was 68.29% when the CTC cutoff value was 2, and the sensitivity of this means of lung cancer detection rose to 82.93% by combining CTC‐based detection with measurements of serum tumor markers. Similarly, the diagnostic sensitivity of this approach in early‐stage lung cancer patients (I‐II) was improved from 63.93% to 78.69%. Detection of CTCs can thus assist with the identification of benign and malignant pulmonary nodules. Conclusions It is potentially helpful and effective to employ a combination of CTCs and serum tumor markers for the clinical diagnosis of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.