Tuberculosis remains one of the world’s deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1–6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6–8) from the respective mutants. Most impressively, ilamycins E1/E2, which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.
Pyrazinamide (PZA), an indispensable component of modern tuberculosis treatment, acts as a key sterilizing drug. While the mechanism of activation of this prodrug into pyrazinoic acid (POA) by Mycobacterium tuberculosis has been extensively studied, not all molecular determinants that confer resistance to this mysterious drug have been identified. Here, we report how a new PZA resistance determinant, the Asp67Asn substitution in Rv2783, confers M. tuberculosis resistance to PZA. Expression of the mutant allele but not the wild-type allele in M. tuberculosis recapitulates the PZA resistance observed in clinical isolates. In addition to catalyzing the metabolism of RNA and single-stranded DNA, Rv2783 also metabolized ppGpp, an important signal transducer involved in the stringent response in bacteria. All catalytic activities of the wild-type Rv2783 but not the mutant were significantly inhibited by POA. These results, which indicate that Rv2783 is a target of PZA, provide new insight into the molecular mechanism of the sterilizing activity of this drug and a basis for improving the molecular diagnosis of PZA resistance and developing evolved PZA derivatives to enhance its antituberculosis activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.