T-cell exhaustion represents a progressive loss of T-cell function. The inhibitory receptor PD-1 is known to negatively regulate CD8+ T cell responses directed against tumor antigen, but the blockades of PD-1 pathway didn't show the objective responses in patients with colorectal cancer (CRC). Thus, further exploring the molecular mechanism responsible for inducing T-cell dysfunction in CRC patients may reveal effective strategies for immune therapy. This study aims to characterize co-inhibitory receptors on T cells in CRC patients to identify novel targets for immunotherapy. In this study, peripheral blood samples from 20 healthy controls and 54 consented CRC patients, and tumor and matched paraneoplastic tissues from 7 patients with advanced CRC, subjected to multicolor flow cytometric analysis of the expression of PD-1 and Tim-3 receptors on CD8+ T cells. It was found that CRC patients presented with significantly higher levels of circulating Tim-3+PD-1+CD8+ T cells compared to the healthy controls (medians of 3.12% and 1.99%, respectively, p = 0.0403). A similar increase of Tim-3+PD-1+CD8+ T cells was also observed in the tumor tissues compared to paraneoplastic tussues. Tim-3+PD-1+CD8+ T cells in tumor tissues produced even less cytokine than that in paraneoplastic tissues. Functional ex vivo experiments showed that Tim-3+PD-1+CD8+ T cells produced significantly less IFN-γ than Tim-3−PD-1−CD8+ T cells, followed by Tim-3+PD-1−CD8+ T cells, and Tim-3−PD-1+CD8+ T cells, indicating a stronger inhibition of IFN-γ production of Tim-3+CD8+ T cells. It is also found in this study that Tim-3+PD-1+CD8+ T cell increase in circulation was correlated with clinical cancer stage but not histologic grade and serum concentrations of cancer biomarker CEA. Our results indicate that upregulation of the inhibitory receptor Tim-3 may restrict T cell responses in CRC patients, and therefore blockage of Tim-3 and thus restoring T cell responses may be a potential therapeutic approach for CRC patients.
BackgroundThere is no standard neoadjuvant therapy for locally advanced esophageal cancer in China. The role of neoadjuvant chemotherapy plus immunotherapy for locally advanced esophageal cancer is still being explored.MethodsThis open-label, randomized phase II study was conducted at a single center between July 2019 and September 2020; 30 patients with locally advanced esophageal squamous cell carcinoma (ESCC) (T3, T4, or lymph-node positive) were enrolled. Patients were randomized according to the enrollment order at a 1:1 ratio to receive chemotherapy on day 1 and toripalimab on day 3 (experimental group) or chemotherapy and toripalimab on day 1 (control group). The chemotherapeutic regimen was paclitaxel and cisplatin. Surgery was performed 4 to 6 weeks after the second cycle of chemoimmunotherapy. The primary endpoint was pathological complete response (pCR) rate, and the secondary endpoint was safety and disease-free survival.ResultsThirty patients completed at least one cycle of chemoimmunotherapy; 11 in the experimental group and 13 in the control group received surgery. R0 resection was performed in all these 24 patients. Four patients (36%) in the experimental group and one (7%) in the control group achieved pCR. The experimental group showed a statistically non-significant higher pCR rate (p = 0.079). PD-L1 combined positive score (CPS) examination was performed in 14 patients; one in the control group had a PD-L1 CPS of 10, and pCR was achieved; the remaining 13 all had ≤1, and 11 of the 13 patients received surgery in which two (in the experimental group) achieved pCR. Two patients endured ≥grade 3 adverse events, and one suffered from grade 3 immune-related enteritis after one cycle of chemoimmunotherapy and dropped off the study. Another patient died from severe pulmonary infection and troponin elevation after surgery.ConclusionsAlthough the primary endpoint was not met, the initial results of this study showed that delaying toripalimab to day 3 in chemoimmunotherapy might achieve a higher pCR rate than that on the same day, and further large-sample clinical trials are needed to verify this.Clinical Trial RegistrationClinicalTrials.gov, identifier NCT 03985670.
The phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway is important in the regulation of cell proliferation through its production of phosphatidylinositol 3,4,5-triphosphate (PIP3). Activation of this pathway is frequently observed in human cancers, including non-small cell lung carcinoma. The PI3-K/Akt pathway is negatively regulated by the dual-specificity phosphatase and tensin homolog (PTEN) protein. PTEN acts as a direct antagonist of PI3-K by dephosphorylating PIP3. Studies have shown that PTEN phosphatase activity is inhibited by PREX2, a guanine nucleotide exchanger factor (GEF). Multiple studies revealed that CELF2, an RNA binding protein, cooperates synergistically with PTEN as a tumor suppressor in multiple cancers. However, the underlying mechanism as to how CELF2 enhances PTEN activity remains unclear. Here, we report that CELF2 interacts with PREX2 and reduces the association of PREX2 with PTEN. Consistent with this observation, PTEN phosphatase activity is upregulated with CELF2 overexpression. In addition, overexpression of CELF2 represses both Akt phosphorylation and cell proliferation only in the presence of PTEN. In an ex vivo study, CELF2 gene delivery could significantly inhibit patient-derived xenografts (PDX) tumor growth. To further investigate the clinical relevance of this finding, we analyzed 87 paired clinical lung adenocarcinoma samples and the results showed that CELF2 protein expression is downregulated in tumor tissues and associated with poor prognosis. The CELF2 gene is located on the chromosome 10p arm, a region frequently lost in human cancers, including breast invasive carcinoma, low-grade glioma and glioblastoma. Analysis of TCGA datasets showed that CELF2 expression is also associated with shorter patient survival time in all these cancers. Overall, our work suggests that CELF2 plays a novel role in PI3-K signaling by antagonizing the oncogenic effect of PREX2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.