Cytotoxic therapy for breast cancer inhibits the growth of primary tumors, but promotes metastasis to the sentinel lymph nodes through the lymphatic system. However, the effect of first-line chemotherapy on the lymphatic endothelium has been poorly investigated. In this study, we determined that paclitaxel, the anti-cancer drug approved for the treatment of metastatic or locally advanced breast cancer, induces lymphatic endothelial cell (LEC) autophagy to increase metastases. While paclitaxel treatment was largely efficacious in inhibiting LEC adhesion, it had no effect on cell survival. Paclitaxel inhibited LEC migration and branch point formation by inducing an autophagy mechanism independent of Akt phosphorylation. In vivo, paclitaxel mediated a higher permeability of lymphatic endothelium to tumor cells and this effect was reversed by chloroquine, an autophagy-lysosome inhibitor. Despite a strong effect on reducing tumor size, paclitaxel significantly increased metastasis to the sentinel lymph nodes. This effect was restricted to a lymphatic dissemination, as chemotherapy did not affect the blood endothelium. Taken together, our findings suggest that the lymphatic system resists to chemotherapy through an autophagy mechanism to promote malignant progression and metastatic lesions. This study paves the way for new combinative therapies aimed at reducing the number of metastases.
ObjectiveWe evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans.DesignDifferent models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver.ResultsThe different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα.ConclusionsThese findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target.Trial registration numberNCT02390232.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.