The Keda Torus eXperiment (KTX) is a new reversed field pinch (RFP) device at the University of Science and Technology of China. The construction and assembly of KTX, including the vacuum chamber, conducting shell, magnetic field windings, power supply system, active control coils, vacuum pump and data acquisition system, have been completed on August 1, 2015. Immediately following that, the first plasma was obtained on August 15, 2015. Intensive conditioning of the machine is underway to ramp up the plasma current toward its full operation. An active feedback mode control system has been built and has been implemented to control the error field around the vertical gaps of the conducting shell. The pulsed power supply systems of ohmic heating field and toroidal field (TF), using thyristor and energy storage capacitors, have been tested and commissioned. The TF power supply has flexibility in being able to operate with a reversed TF configuration and stable TF configuration. The fundamental diagnostic tools are developed for early KTX operation. Currently, the plasma current is up to 205 kA and the maximum discharge length is 21 ms, approaching to the conducting shell penetration time. Furthermore, typical RFP discharges are being produced with RFP state lasting 2 ms. These initial operation results for KTX are described in detail.
The Keda Torus eXperiment (KTX) is still operated in the commissioning phase, and preparation for the operation capability of the KTX phase II upgrade is underway. The diagnostics in the KTX have been greatly developed: (1) the terahertz interferometer has been upgraded to seven chords for electron density profile inversion; (2) a Thomson scattering system with a 5 Joule laser has been installed and commissioning is in progress; (3) a 3D movable probe system has been developed for the electromagnetic turbulence measurement; (4) double-foil soft x-ray imaging diagnostics have been set up and a bench test has been completed; (5) an edge capacitive probe has been installed for the radial electrical field measurement; (6) a multi-channel spectrograph system has been built for detecting impurities of carbon and oxygen. In addition, the design of a new compact torus injection system has been completed for feeding and momentum driving. Pilot research, such as the 3D reversed field pinch physics and electromagnetic turbulence, etc, have been conducted in the discharge status of the KTX. The 3D spectra characters of electromagnetic turbulence are firstly measured using a classical two-point technique by Langmuir probe arrays set on the 3D movable probe system and edge magnetic sensors. The forward scattering is collected by the interferometer system, which shows the potential for turbulence research. The electromagnetic turbulence is tentatively investigated in the KTX. The formation of a quasi-single-helicity state in the KTX regime is also preliminarily explored in simulation.
An optical fiber Mach–Zehnder interferometer at a wavelength of 1.55 µm has been developed for measurements of high electron density on compact torus (CT) plasmas with a high time resolution of 0.1 µs and high phase resolution of 6.4 × 10−4 rad. To improve density measurement accuracy, the phase noise of the interferometer has been investigated in detail and optimized. In the bench test, the interferometer was calibrated using a piezoelectric ceramic actuator with known stroke. Initial results on CT plasma show that the optical fiber interferometer provides reliable density measurements at two spatial locations and the bulk velocity of plasma can be determined by the method of time of flight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.