TNF is a key inflammatory cytokine. Using a modified tandem affinity purification approach, we identified HOIL-1 and HOIP as functional components of the native TNF-R1 signaling complex (TNF-RSC). Together, they were shown to form a linear ubiquitin chain assembly complex (LUBAC) and to ubiquitylate NEMO. We show that LUBAC binds to ubiquitin chains of different linkage types and that its recruitment to the TNF-RSC is impaired in TRADD-, TRAF2-, and cIAP1/2- but not in RIP1- or NEMO-deficient MEFs. Furthermore, the E3 ligase activity of cIAPs, but not TRAF2, is required for HOIL-1 recruitment to the TNF-RSC. LUBAC enhances NEMO interaction with the TNF-RSC, stabilizes this protein complex, and is required for efficient TNF-induced activation of NF-kappaB and JNK, resulting in apoptosis inhibition. Finally, we demonstrate that sustained stability of the TNF-RSC requires LUBAC's enzymatic activity, thereby adding a third form of ubiquitin linkage to the triggering of TNF signaling by the TNF-RSC.
The CD95 (Apo-1/Fas)/CD95 ligand (CD95L) system is best characterized as a trigger of apoptosis. Nevertheless, despite broad expression of CD95L and CD95 in the developing brain, absence of functional CD95 (lpr mice) or CD95L (gld mice) does not alter neuronal numbers. Here, we report that in embryonic hippocampal and cortical neurons in vivo and in vitro CD95L does not induce apoptosis. Triggering of CD95 in cultured immature neurons substantially increases neurite branches by promoting their formation. The branching increase occurs in a caspase-independent and death domain-dependent manner and is paralleled by an increase in the nonphosphorylated form of Tau. Most importantly, lpr and gld mutants exhibit a reduced number of dendritic branches in vivo at the time when synapse formation takes place. These data reveal a novel function for the CD95 system and add to the picture of guidance molecules in the developing brain.
Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.