The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis—a major underlying cause of mortality worldwide—to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.
Rationale: Acute lung injury (ALI) causes high mortality, but its molecular mechanisms and therapeutic options remain ill-defined. Gram-negative bacterial infections are the main cause of ALI, leading to lung neutrophil infiltration, permeability increases, deterioration of gas exchange, and lung damage. Platelets are activated during ALI, but insights into their mechanistic contribution to neutrophil accumulation in the lung are elusive. Objectives: To determine mechanisms of platelet-mediated neutrophil recruitment in ALI. Methods: Interference with platelet-neutrophil interactions using antagonists to P-selectin and glycoprotein IIb/IIIa or a small peptide antagonist disrupting platelet chemokine heteromer formation in mouse models of ALI. Measurements and Main Results: In a murine model of LPS-induced ALI, we uncover important roles for neutrophils and platelets in permeability changes and subsequent lung damage. Furthermore, platelet depletion abrogated lung neutrophil infiltration, suggesting a sequential participation of platelets and neutrophils. Whereas antagonists to Pselectin and glycoprotein IIb/IIIa had no effects on LPS-mediated ALI, antibodies to the platelet-derived chemokines CCL5 and CXCL4 strongly diminished neutrophil eflux and permeability changes. The two chemokines were found to form heteromers in human and murine ALI samples, positively correlating with leukocyte influx into the lung. Disruption of CCL5-CXCL4 heteromers in LPS-, acid-, and sepsis-induced ALI abolished lung edema, neutrophil infiltration, and tissue damage, thereby revealing a causal contribution.Conclusions: Taken together, our data identify a novel function of platelet-derived chemokine heteromers during ALI and demonstrate means for therapeutic interference.Keywords: neutrophil; platelet; chemokine; recruitment; acute lung injury Acute lung injury (ALI) is a life-threatening disease with an ageadjusted incidence of 86.2 per 100,000 person-years (1). Despite innovations in intensive care medicine, the mortality of ALI remains approximately 40%. ALI is characterized by an increased permeability of the alveolar-capillary barrier, resulting in lung edema with protein-rich fluid and consequently in impaired arterial oxygenation. A major cause for development of ALI is sepsis, wherein gram-negative bacteria are the dominating factor. LPS inhalation mimics human gram-negative ALI, leading to recruitment of neutrophils, pulmonary edema, and finally impairment of gas exchange (2).Recruitment of neutrophils is a key event in development of ALI (3) resulting in plasma leakage and deterioration of oxygenation. The importance of neutrophils in ALI is supported by studies, where lung injury was abolished or reversed by depletion of neutrophils (4,5). Much of the neutrophil-dependent ALI is thought to be mediated by granule proteins released from activated neutrophils. For example, azurocidin and a-defensins have been found to directly affect permeability changes (6, 7), whereas proteases of neutrophilic origin, such as neutrophil ela...
Tumor angiogenesis is a key event in cancer progression. Here, we report that tumors can stimulate tumor angiogenesis by secretion of galectin-1. Tumor growth and tumor angiogenesis of different tumor models are hampered in galectin-1-null (gal-1 −/− ) mice. However, tumor angiogenesis is less affected when tumor cells express and secrete high levels of galectin-1. Furthermore, tumor endothelial cells in gal-1 −/− mice take up galectin-1 that is secreted by tumor cells. Uptake of galectin-1 by cultured endothelial cells specifically promotes H-Ras signaling to the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk) kinase (Mek)/Erk cascade and stimulates endothelial cell proliferation and migration. Moreover, the activation can be blocked by galectin-1 inhibition as evidenced by hampered membrane translocation of H-Ras.GTP and impaired Raf/Mek/Erk phosphorylation after treatment with the galectin-1-targeting angiogenesis inhibitor anginex. Altogether, these data identify galectin-1 as a proangiogenic factor. These findings have direct implications for current efforts on galectin-1-targeted cancer therapies. Cancer Res; 70(15); 6216-24. ©2010 AACR.
Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.