IMPORTANCE β-Blocker therapy may control heart rate and attenuate the deleterious effects of β-adrenergic receptor stimulation in septic shock. However, β-Blockers are not traditionally used for this condition and may worsen cardiovascular decompensation related through negative inotropic and hypotensive effects.OBJECTIVE To investigate the effect of the short-acting β-blocker esmolol in patients with severe septic shock. DESIGN, SETTING, AND PATIENTSOpen-label, randomized phase 2 study, conducted in a university hospital intensive care unit (ICU) between November 2010 and July 2012, involving patients in septic shock with a heart rate of 95/min or higher requiring high-dose norepinephrine to maintain a mean arterial pressure of 65 mm Hg or higher. INTERVENTIONSWe randomly assigned 77 patients to receive a continuous infusion of esmolol titrated to maintain heart rate between 80/min and 94/min for their ICU stay and 77 patients to standard treatment. MAIN OUTCOMES AND MEASURESOur primary outcome was a reduction in heart rate below the predefined threshold of 95/min and to maintain heart rate between 80/min and 94/min by esmolol treatment over a 96-hour period. Secondary outcomes included hemodynamic and organ function measures; norepinephrine dosages at 24, 48, 72, and 96 hours; and adverse events and mortality occurring within 28 days after randomization. RESULTS Targeted heart rates were achieved in all patients in the esmolol group compared with those in the control group. The median AUC for heart rate during the first 96 hours was −28/min (IQR, −37 to −21) for the esmolol group vs −6/min (95% CI, −14 to 0) for the control group with a mean reduction of 18/min (P < .001). For stroke volume index, the median AUC for esmolol was 4 mL/m 2 (IQR, −1 to 10) vs 1 mL/m 2 for the control group (IQR, −3 to 5; P = .02), whereas the left ventricular stroke work index for esmolol was 3 mL/m 2 (IQR, 0 to 8) vs 1 mL/m 2 for the control group (IQR, −2 to 5; P = .03). For arterial lactatemia, median AUC for esmolol was −0.1 mmol/L (IQR, −0.6 to 0.2) vs 0.1 mmol/L for the control group (IQR, −0.3 for 0.6; P = .007); for norepinephrine, −0.11 μg/kg/min (IQR, −0.46 to 0.02) for the esmolol group vs −0.01 μg/kg/min (IQR, −0.2 to 0.44) for the control group (P = .003). Fluid requirements were reduced in the esmolol group: median AUC was 3975 mL/24 h (IQR, 3663 to 4200) vs 4425 mL/24 h (IQR, 4038 to 4775) for the control group (P < .001). We found no clinically relevant differences between groups in other cardiopulmonary variables nor in rescue therapy requirements. Twenty-eight day mortality was 49.4% in the esmolol group vs 80.5% in the control group (adjusted hazard ratio, 0.39; 95% CI, 0.26 to 0.59; P < .001). CONCLUSIONS AND RELEVANCEFor patients in septic shock, open-label use of esmolol vs standard care was associated with reductions in heart rates to achieve target levels, without increased adverse events. The observed improvement in mortality and other secondary clinical outcomes warrants further investigation.
Table of contentsP001 - Sepsis impairs the capillary response within hypoxic capillaries and decreases erythrocyte oxygen-dependent ATP effluxR. M. Bateman, M. D. Sharpe, J. E. Jagger, C. G. EllisP002 - Lower serum immunoglobulin G2 level does not predispose to severe flu.J. Solé-Violán, M. López-Rodríguez, E. Herrera-Ramos, J. Ruíz-Hernández, L. Borderías, J. Horcajada, N. González-Quevedo, O. Rajas, M. Briones, F. Rodríguez de Castro, C. Rodríguez GallegoP003 - Brain protective effects of intravenous immunoglobulin through inhibition of complement activation and apoptosis in a rat model of sepsisF. Esen, G. Orhun, P. Ergin Ozcan, E. Senturk, C. Ugur Yilmaz, N. Orhan, N. Arican, M. Kaya, M. Kucukerden, M. Giris, U. Akcan, S. Bilgic Gazioglu, E. TuzunP004 - Adenosine a1 receptor dysfunction is associated with leukopenia: A possible mechanism for sepsis-induced leukopeniaR. Riff, O. Naamani, A. DouvdevaniP005 - Analysis of neutrophil by hyper spectral imaging - A preliminary reportR. Takegawa, H. Yoshida, T. Hirose, N. Yamamoto, H. Hagiya, M. Ojima, Y. Akeda, O. Tasaki, K. Tomono, T. ShimazuP006 - Chemiluminescent intensity assessed by eaa predicts the incidence of postoperative infectious complications following gastrointestinal surgeryS. Ono, T. Kubo, S. Suda, T. Ueno, T. IkedaP007 - Serial change of c1 inhibitor in patients with sepsis – A prospective observational studyT. Hirose, H. Ogura, H. Takahashi, M. Ojima, J. Kang, Y. Nakamura, T. Kojima, T. ShimazuP008 - Comparison of bacteremia and sepsis on sepsis related biomarkersT. Ikeda, S. Suda, Y. Izutani, T. Ueno, S. OnoP009 - The changes of procalcitonin levels in critical patients with abdominal septic shock during blood purificationT. Taniguchi, M. OP010 - Validation of a new sensitive point of care device for rapid measurement of procalcitoninC. Dinter, J. Lotz, B. Eilers, C. Wissmann, R. LottP011 - Infection biomarkers in primary care patients with acute respiratory tract infections – Comparison of procalcitonin and C-reactive proteinM. M. Meili, P. S. SchuetzP012 - Do we need a lower procalcitonin cut off?H. Hawa, M. Sharshir, M. Aburageila, N. SalahuddinP013 - The predictive role of C-reactive protein and procalcitonin biomarkers in central nervous system infections with extensively drug resistant bacteriaV. Chantziara, S. Georgiou, A. Tsimogianni, P. Alexandropoulos, A. Vassi, F. Lagiou, M. Valta, G. Micha, E. Chinou, G. MichaloudisP014 - Changes in endotoxin activity assay and procalcitonin levels after direct hemoperfusion with polymyxin-b immobilized fiberA. Kodaira, T. Ikeda, S. Ono, T. Ueno, S. Suda, Y. Izutani, H. ImaizumiP015 - Diagnostic usefullness of combination biomarkers on ICU admissionM. V. De la Torre-Prados, A. Garcia-De la Torre, A. Enguix-Armada, A. Puerto-Morlan, V. Perez-Valero, A. Garcia-AlcantaraP016 - Platelet function analysis utilising the PFA-100 does not predict infection, bacteraemia, sepsis or outcome in critically ill patientsN. Bolton, J. Dudziak, S. Bonney, A. Tridente, P. NeeP017 - Extracellular histone H3 levels are in...
This pilot study demonstrated that heart rate control by a titrated esmolol infusion in septic shock patients was associated with maintenance of stroke volume, preserved microvascular blood flow, and a reduction in norepinephrine requirements.
Objectives: Propofol-based sedation may increase hemodynamic instability by decreasing vascular tone and venous return. Incremental exogenous catecholamines doses may be required to counteract such effects, aggravating the deleterious effects of sympathetic overstimulation. α-2 adrenergic agonists have been reported to decrease norepinephrine requirements in experimental septic shock. The aim of the present study is to test the hypothesis that switching from sedation with propofol to the α-2 agonist dexmedetomidine may decrease norepinephrine doses in septic shock. Design: Prospective open-label crossover study. Settings: University hospital, ICU. Patients: Thirty-eight septic shock patients requiring norepinephrine to maintain adequate mean arterial pressure and needing deep sedation with propofol and remifentanil to maintain a Richmond Agitation-Sedation Scale score between –3 and –4. Interventions: An initial set of measurements including hemodynamics, norepinephrine doses, and depth of sedation were obtained during sedation with propofol. Propofol was then replaced by dexmedetomidine and a second set of data was obtained after 4 hours of dexmedetomidine infusion. Sedation was switched back to propofol, and a final set of measurements was obtained after 8 hours. A Richmond Agitation-Sedation Scale score between –3 and –4 was maintained during the study period. Measurements and Main Results: Norepinephrine requirements decreased from 0.69 ± 0.72 μg/kg/min before dexmedetomidine to 0.30 ± 0.25 μg/kg/min 4 hours after dexmedetomidine infusion, increasing again to 0.42 ± 0.36 μg/kg/min while on propofol 8 hours after stopping dexmedetomidine (p < 0.005). Dexmedetomidine dosage was 0.7 ± 0.2 μg/kg/hr. Before and after dexmedetomidine infusion, sedative doses remained unchanged (propofol 2.6 ± 1.2 vs 2.6 ± 1.2 mg/kg/hr; p = 0.23 and remifentanil 1.27 ± 0.17 vs 1.27 ± 0.16 μg/kg/hr; p = 0.52, respectively). Richmond Agitation-Sedation Scale was –4 (–4 to –3) before, –4 (–4 to –3) during, and –4 (–4 to –4) after dexmedetomidine (p = 0.07). Conclusions: For a comparable level of sedation, switching from propofol to dexmedetomidine resulted in a reduction of catecholamine requirements in septic shock patients.
IntroductionThe present study was designed to determine the effects of continuously infused norepinephrine (NE) plus (1) terlipressin (TP) or (2) arginine vasopressin (AVP) or (3) placebo on sublingual microcirculation in septic shock patients. The primary study end point was a difference of ≥ 20% in the microvascular flow index of small vessels among groups.MethodsThe design of the study was a prospective, randomized, double-blind clinical trial. NE was titrated to maintain mean arterial pressure (MAP) between 65 and 75 mmHg after establishment of normovolemia in 60 septic shock patients. Thereafter patients (n = 20 per group) were randomized to receive continuous infusions of either TP (1 μg/kg/hour), AVP (0.04 U/minute) or placebo (isotonic saline). In all groups, open-label NE was adjusted to maintain MAP within threshold values if needed. The sublingual microcirculatory blood flow of small vessels was assessed by sidestream dark-field imaging. All measurements, including data from right heart catheterization and norepinephrine requirements, were obtained at baseline and 6 hours after randomization.ResultsTP and AVP decreased NE requirements at the end of the 6-hour study period. The data are medians (25th and 75th interquartile ranges (IQRs)): 0.57 μg/kg/minute (0.29 to 1.04) vs. 0.16 μg/kg/minute (0.03 to 0.37) for TP and 0.40 μg/kg/minute (0.20 to 1.05) vs. 0.23 μg/kg/minute (0.03 to 0.77) for AVP, with statistical significance of P < 0.05 vs. baseline and vs. placebo. There were no differences in sublingual microcirculatory variables, systemic hemodynamics, oxygen transport and acid-base homeostasis among the three study groups during the entire observation period. The proportions of perfused vessels increased in relation to baseline within all study groups, and there were no significant differences between groups. The specific data were as follows (median (IQR)): 9.7% (2.6 to 19.8) for TP, 8.9% (0.0 to 17.8) for AVP, and 6.9% (3.5 to 10.1) for placebo (P < 0.05 vs. baseline for each comparison), as well as perfused vessel density 18.6% (8.6 to 36.9) for TP, 20.2% (-3.0 to 37.2) for AVP, and 11.4% (-3.0 to 19.4) for placebo (P < 0.05 vs. baseline for each comparison).ConclusionsThe present study suggests that to achieve a MAP of 65 to 75 mmHg in septic patients treated with NE, the addition of continuously infused low-dose TP or AVP does not affect sublingual microcirculatory blood flow. In addition, our results suggest that microcirculatory flow abnormalities are mainly related to other factors (for example, volume status, timing, hemodynamics and progression of the disease) rather than to the vasopressor per se.Trial registrationClinicalTrial.gov NCT00995839
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.