[1] Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included standreplacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m −2 y −1 ) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m −2 y −1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.
Genomic selection can increase genetic gain per generation through early selection. Genomic selection is expected to be particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species. Alternative approaches to genomic selection prediction models may perform differently for traits with distinct genetic properties. Here the performance of four different original methods of genomic selection that differ with respect to assumptions regarding distribution of marker effects, including (i) ridge regression–best linear unbiased prediction (RR–BLUP), (ii) Bayes A, (iii) Bayes Cπ, and (iv) Bayesian LASSO are presented. In addition, a modified RR–BLUP (RR–BLUP B) that utilizes a selected subset of markers was evaluated. The accuracy of these methods was compared across 17 traits with distinct heritabilities and genetic architectures, including growth, development, and disease-resistance properties, measured in a Pinus taeda (loblolly pine) training population of 951 individuals genotyped with 4853 SNPs. The predictive ability of the methods was evaluated using a 10-fold, cross-validation approach, and differed only marginally for most method/trait combinations. Interestingly, for fusiform rust disease-resistance traits, Bayes Cπ, Bayes A, and RR–BLUB B had higher predictive ability than RR–BLUP and Bayesian LASSO. Fusiform rust is controlled by few genes of large effect. A limitation of RR–BLUP is the assumption of equal contribution of all markers to the observed variation. However, RR-BLUP B performed equally well as the Bayesian approaches.The genotypic and phenotypic data used in this study are publically available for comparative analysis of genomic selection prediction models.
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO 2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO 2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle-climate models.nitrogen cycle ͉ climate change ͉ foliar nitrogen ͉ ecosystem-climate feedback ͉ remote sensing T errestrial ecosystems influence the Earth's climate through regulation of mass and energy exchange with the atmosphere. In recent years, much of the focus has been directed toward factors affecting the Ϸ1-to 2-Pg carbon (C) sink that is believed to exist in the terrestrial biosphere (1). Candidate mechanisms include forest regrowth after agricultural abandonment (2) and growth enhancement from nitrogen (N) deposition and/or elevated CO 2 (3, 4). In each case, interactions between C and N play a central role. Observations of N limitations to productivity are widespread (5), and responses to experimental CO 2 fertilization are often restricted by N availability (6-8). Although evidence of an N deposition effect on net C exchange has only recently been documented (4), the importance of N as a regulator of C assimilation is well established through the widely observed relationship between leaf-level photosynthetic capacity (A max ) and foliar N concentrations (9-11). Despite this understanding, few analyses have included continuous variation in plant N status as a driver of C cycle processes at regional to global scales. There are at least 2 reasons for this. First, because evidence for the photosynthesis-foliar N relationship comes predominantly from leaf-level observations, there is uncertainty about whether similar trends occur over whole-plant canopies or whether canopy-level factors such as leaf area index (LAI) become dominant at this scale. Second, although many ecosystem models simulate plant and soil N dynamics, there are no widely available methods for obtaining mapped foliar N estimates over ...
a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 1 8 2 7 -1 8 4a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j
openAccessArticle: FalsePage Range: 581-581doi: 10.1016/j.rse.2012.06.004Harvest Date: 2016-01-12 15:13:54issueName:cover date: 2012-09-01pubType
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.