Mutations in isocitrate dehydrogenases (IDHs) have a gainof-function effect leading to R(À)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R-and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC 50 ) values for the R-form of 2HG varied from approximately 25 lM for the histone N e -lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.
Hypoxia-inducible factor-1 (HIF-1) is a transcriptional complex that controls cellular and systemic homeostatic responses to oxygen availability. HIF-1 alpha is the oxygen-regulated subunit of HIF-1, an alpha beta heterodimeric complex. HIF-1 alpha is stable in hypoxia, but in the presence of oxygen it is targeted for proteasomal degradation by the ubiquitination complex pVHL, the protein of the von Hippel Lindau (VHL) tumour suppressor gene and a component of an E3 ubiquitin ligase complex. Capture of HIF-1 alpha by pVHL is regulated by hydroxylation of specific prolyl residues in two functionally independent regions of HIF-1 alpha. The crystal structure of a hydroxylated HIF-1 alpha peptide bound to VCB (pVHL, elongins C and B) and solution binding assays reveal a single, conserved hydroxyproline-binding pocket in pVHL. Optimized hydrogen bonding to the buried hydroxyprolyl group confers precise discrimination between hydroxylated and unmodified prolyl residues. This mechanism provides a new focus for development of therapeutic agents to modulate cellular responses to hypoxia.
Four compounds in clinical trials for anaemia treatment are potent inhibitors of the hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs), but differ in potency and how they interact with HIF at the PHD active site.
Templates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods. Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging. Here we show that Vernier complexes can solve this problem: if the number of binding sites on the template, n(T), is not a multiple of the number of binding sites on the molecular building blocks, n(B), then small templates can direct the assembly of relatively large Vernier complexes where the number of binding sites in the product, n(P), is the lowest common multiple of n(B) and n(T) (refs 8, 9). We illustrate the value of this concept for the covalent synthesis of challenging targets by using a simple six-site template to direct the synthesis of a 12-porphyrin nano-ring with a diameter of 4.7 nm, thus establishing Vernier templating as a powerful new strategy for the synthesis of large monodisperse macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.