Amplicon-based marker gene surveys form the basis of most microbiome and other microbial community studies. Such PCR-based methods have multiple steps, each of which is susceptible to error and bias. Variance in results has also arisen through the use of multiple methods of next-generation sequencing (NGS) amplicon library preparation. Here we formally characterized errors and biases by comparing different methods of amplicon-based NGS library preparation. Using mock community standards, we analyzed the amplification process to reveal insights into sources of experimental error and bias in amplicon-based microbial community and microbiome experiments. We present a method that improves on the current best practices and enables the detection of taxonomic groups that often go undetected with existing methods.
The domestic chicken is a common model organism for human biological research and of course also forms the basis of a global protein industry. Recent methodological advances have spurred the recognition of microbiomes as complex communities with important influences on the health and disease status of the host. In this minireview, we provide an overview of the current state of knowledge of the chicken gastrointestinal microbiome focusing on spatial and temporal variability, the presence and importance of human pathogens, the influence of the microbiota on the immune system, and the importance of the microbiome for poultry nutrition. Review and meta-analysis of public data showed cecal communities dominated by Firmicutes and Bacteroides at the phylum level, while at finer levels of taxonomic resolution, a phylogenetically diverse assemblage of microorganisms appears to have similar metabolic functions that provide important benefits to the host as inferred from metagenomic data. This observation of functional redundancy may have important implications for management of the microbiome. We foresee advances in strategies to improve gut health in commercial operations through management of the intestinal microbiota as an alternative to in-feed subtherapeutic antibiotics, improvements in pre- and probiotics, improved management of polymicrobial poultry diseases, and better control of human pathogens via colonization reduction or competitive exclusion strategies.
The primate gastrointestinal tract is home to trillions of bacteria, whose composition is associated with numerous metabolic, autoimmune, and infectious human diseases. Although there is increasing evidence that modern and Westernized societies are associated with dramatic loss of natural human gut microbiome diversity, the causes and consequences of such loss are challenging to study. Here we use nonhuman primates (NHPs) as a model system for studying the effects of emigration and lifestyle disruption on the human gut microbiome. Using 16S rRNA gene sequencing in two model NHP species, we show that although different primate species have distinctive signature microbiota in the wild, in captivity they lose their native microbes and become colonized with Prevotella and Bacteroides, the dominant genera in the modern human gut microbiome. We confirm that captive individuals from eight other NHP species in a different zoo show the same pattern of convergence, and that semicaptive primates housed in a sanctuary represent an intermediate microbiome state between wild and captive. Using deep shotgun sequencing, chemical dietary analysis, and chloroplast relative abundance, we show that decreasing dietary fiber and plant content are associated with the captive primate microbiome. Finally, in a meta-analysis including published human data, we show that captivity has a parallel effect on the NHP gut microbiome to that of Westernization in humans. These results demonstrate that captivity and lifestyle disruption cause primates to lose native microbiota and converge along an axis toward the modern human microbiome.human microbiome | primate microbiome | dietary fiber | dysbiosis | microbial ecology
-The purpose of this study was to compare avian pathogenic Escherichia coli (APEC) isolates to fecal isolates of apparently healthy poultry (avian fecal E. coli or AFEC) by their possession of various traits in order to ascertain whether APEC and AFEC are distinct and if the APEC strains constitute a distinct pathotype. Four hundred and fifty-one APEC and one hundred and four AFEC isolates were examined for possession of traits associated with the virulence of human extraintestinal pathogenic E. coli (ExPEC) as well as APEC. Several of the genes occurred in the majority of APEC and only infrequently in AFEC, including cvaC, iroN, iss, iutA, sitA, tsh, fyuA, irp2, and ompT. Of these genes, several have been found on large plasmids in APEC. Other genes occurred in significantly more APEC than AFEC but did not occur in the majority of APEC. Isolates were also evaluated by serogroup, lactose utilization, and hemolytic reaction. Twenty-nine and a half percent of the APEC and forty-two and three tenths percent of the AFEC were not serogrouped because they were not typeable with standard antisera, typed to multiple serogroups, were rough, autoagglutinated, or were not done. Around 65% of the typeable APEC (205 isolates) and AFEC (41 isolates) were classified into shared serogroups, and about a third of both fell into APEC-(113 isolates) or AFEC-(19 isolates) unique serogroups. Most were able to use lactose. No isolate was hemolytic. Overall, the majority of the APEC isolates surveyed shared a common set of putative virulence genes, many of which have been localized to an APEC plasmid known as pTJ100. This common set of genes may prove useful in defining an APEC pathotype. avian pathogenic Escherichia coli (APEC) / pathotype / virulence plasmid / ExPEC / pTJ100
Since avian pathogenic Escherichia coli (APEC) and human uropathogenic E. coli (UPEC) may encounter similar challenges when establishing infection in extraintestinal locations, they may share a similar content of virulence genes and capacity to cause disease. In the present study, 524 APEC and 200 UPEC isolates were compared by their content of virulence genes, phylogenetic group, and other traits. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. Based on these results, the propensity of both groups to cause extraintestinal infections, and a well-documented ability of avian E. coli to spread to human beings, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. However, significant differences in the prevalence of the traits occurred across the two groups, suggesting that if APEC are involved in human urinary tract infections, they are not involved in all of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.