Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy closely associated with genetic factors and Epstein-Barr virus infection. To identify the common genetic variants linked to NPC susceptibility, we conducted a genome-wide association study (GWAS) in 277 NPC patients and 285 healthy controls within the Taiwanese population, analyzing 480,365 single-nucleotide polymorphisms (SNPs). Twelve statistically significant SNPs were identified and mapped to chromosome 6p21.3. Associations were replicated in two independent sets of case-control samples. Two of the most significant SNPs (rs2517713 and rs2975042; p(combined) = 3.9 x 10(-20) and 1.6 x 10(-19), respectively) were located in the HLA-A gene. Moreover, we detected significant associations between NPC and two genes: specifically, gamma aminobutyric acid b receptor 1 (GABBR1) (rs29232; p(combined) = 8.97 x 10(-17)) and HLA-F (rs3129055 and rs9258122; p(combined) = 7.36 x 10(-11) and 3.33 x 10(-10), respectively). Notably, the association of rs29232 remained significant (residual p < 5 x 10(-4)) after adjustment for age, gender, and HLA-related SNPs. Furthermore, higher GABA(B) receptor 1 expression levels can be found in the tumor cells in comparison to the adjacent epithelial cells (p < 0.001) in NPC biopsies, implying a biological role of GABBR1 in NPC carcinogenesis. To our knowledge, it is the first GWAS report of NPC showing that multiple loci (HLA-A, HLA-F, and GABBR1) within chromosome 6p21.3 are associated with NPC. Although some of these relationships may be attributed to linkage disequilibrium between the loci, the findings clearly provide a fresh direction for the study of NPC development.
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunode®ciency, cancer predisposition, genome instability and radiation sensitivity. The cellular phenotype of A-T points to defects in signal transduction pathways involved in activation of cell cycle checkpoints by free radical damage, and other pathways that mediate the transmission of speci®c mitogenic stimuli. The product of the responsible gene, ATM, belongs to a family of large proteins that contribute to maintaining genome stability and cell cycle progression in various organisms. A recombinant vector that stably expresses a full-length ATM protein is a valuable tool for its functional analysis. We constructed and cloned a recombinant, full-length open reading frame of ATM using a combination of vectors and hosts that overcame an inherent instability of this sequence. Recombinant ATM was stably expressed in insect cells using a baculovirus vector, albeit at a low level, and in human A-T cells using an episomal expression vector. An amino-terminal FLAG epitope added to the protein allowed highly speci®c detection of the recombinant molecule by immunoblotting, immunoprecipitation and immunostaining, and its isolation using immunoanity. Similar to endogenous ATM, the recombinant protein is located mainly in the nucleus, with low levels in the cytoplasm. Ectopic expression of ATM in A-T cells restored normal sensitivity to ionizing radiation and the radiomimetic drug neocarzinostatin, and a normal pattern of post-irradiation DNA synthesis, which represents an Sphase checkpoint. These observations indicate that the recombinant, epitope-tagged protein is functional. Introduction into this molecule of a known A-T missense mutation, Glu2904Gly, resulted in apparent instability of the protein and inability to complement the A-T phenotype. These ®ndings indicate that the physiological defects characteristic of A-T cells result from the absence of the ATM protein, and that this de®ciency can be corrected by ectopic expression of this protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.