Chromosomal instability (CIN) in tumors is characterized by chromosomal abnormalities and an altered gene expression signature; however, the mechanism of CIN is poorly understood. CCND1 (which encodes cyclin D1) is overexpressed in human malignancies and has been shown to play a direct role in transcriptional regulation. Here, we used genome-wide ChIP sequencing and found that the DNA-bound form of cyclin D1 occupied the regulatory region of genes governing chromosomal integrity and mitochondrial biogenesis. Adding cyclin D1 back to Ccnd1 -/-mouse embryonic fibroblasts resulted in CIN gene regulatory region occupancy by the DNAbound form of cyclin D1 and induction of CIN gene expression. Furthermore, increased chromosomal aberrations, aneuploidy, and centrosome abnormalities were observed in the cyclin D1-rescued cells by spectral karyotyping and immunofluorescence. To assess cyclin D1 effects in vivo, we generated transgenic mice with acute and continuous mammary gland-targeted cyclin D1 expression. These transgenic mice presented with increased tumor prevalence and signature CIN gene profiles. Additionally, interrogation of gene expression from 2,254 human breast tumors revealed that cyclin D1 expression correlated with CIN in luminal B breast cancer. These data suggest that cyclin D1 contributes to CIN and tumorigenesis by directly regulating a transcriptional program that governs chromosomal stability. IntroductionChromosomal instability (CIN) in tumors (1-3) is characterized by an elevated rate of gain or loss of whole chromosomes (i.e., aneuploidy) and/or as structural chromosomal aberrations (i.e., translocations, deletions, and duplications). Aneuploidy is one of the most striking differences between cancer and normal cells. The molecular mechanisms inducing CIN as well as the timing of CIN in tumor progression, invasion, and metastasis is poorly understood (4, 5). Cell cycle-associated factors have been implicated in CIN, including cyclin E (6). The relative enrichment of a molecular genetic signature of CIN-related genes has been used to quantitate a CIN score (7); this signature includes AURKB (a component of the chromosomal passenger complex [CPC]), TOP2A, CENPP, MLF1IP (a component of the CENPA-NAC kinetochore complex protein), ZW10 (a kinetochore-associated mitotic checkpoint protein), and CKAP2 (a mitotic spindle-associated protein) (3) as well as the retinoblastoma (pRb) protein. Supernumerary centrosomes increase the frequency of dual attachment of 1 sister kinetochore to 2 spindle poles. Cyclin E activity promotes centrosome duplication during S phase onset. Loss of pRb can also alter centrosome number and formation of micronuclei, leading to
Increasing evidence links deregulation of the USP22 deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well-defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor (AR) accumulation and signaling, and that it enhances expression of critical target genes co-regulated by AR and MYC. USP22 not only reprogrammed AR function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression whcih drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.