Medullary thyroid carcinoma (MTC) occurs sporadically or as part of the inherited cancer syndrome multiple endocrine neoplasia (MEN) type 2. In MEN 2A, germline missense mutations are found in one of five cysteine codons within exons 10 and 11 in the extracellular domain of the RET protooncogene. In MEN 2B, germline mutations occur in codon 918 (exon 16) within the catalytic core of the tyrosine kinase domain. To determine if RET mutations similar to those in MEN 2A and 2B play a role in the pathogenesis of sporadic MTC, we analysed 71 sporadic tumours comprising 68 primary tumours and three cell lines, for mutations in RET exons 10, 11, and 16. We found that 23% of sporadic MTC had RET codon 918 mutations, while only 3% had exon 10 mutations, and none had mutations in exon 11. We found no exon 16 mutations in MTC from 14 MEN 2A cases. Thus, exon 10 and 11 mutations, commonly found in familial MTC and MEN 2A, rarely occur in sporadic MTC; somatic mutation of RET codon 918 appears to play a role in the tumourigenesis of a significant minority of sporadic MTC but not MEN 2A tumours. In addition to their biological interest, these findings may have some clinical application in determining whether a patient presenting with isolated MTC is truly sporadic or is part of an inherited cancer syndrome.
Activating germline mutations of the RET receptor tyrosine kinase are found in the majority of cases of inherited cancer syndrome MEN 2, and inactivating mutations in some cases of dominantly inherited Hirschsprung disease. Using RET activated by a MEN 2 mutation, we show that both the SH2 and PTB domains of the adaptor protein Shc interact with RET, and we identify the PTB domain interaction site. Interaction with both the SH2 and PTB domains of Shc contributes to the transcriptional activation of a serum response element. RET alternate splicing aects the strength of interaction with both the Shc SH2 and PTB domains. In addition, a splice isoform-speci®c HSCR missense mutation, which does not inactivate the RET kinase activity, decreases the strength of the PTB domain interaction and the level of RET-dependent Shc phosphorylation.
Interleukin (IL)-4 and IL-12 together with T cell receptor (TCR) engagement are crucial for the differentiation of CD4+ T cells into T helper (Th)2 or Th1 cells, respectively. Although IL-4 receptors (IL-4Rs) but not IL-12Rs are expressed on naive CD4+ T cells, IL-4 has no apparent advantage over IL-12 in driving naive T cell differentiation when the cells are primed with both IL-4 and IL-12 in vitro. It was found that IL-4–induced phosphorylation of Janus kinases 1 and 3, IL-4Rα, signal transducer and activator of transcription 6, and insulin receptor substrate 2 was strikingly but transiently inhibited by TCR ligation both in conventional and TCR transgenic T cells. TCR engagement also blocked the expression of an IL-4–inducible gene. Signals induced by other cytokines, including IL-2, IL-6, and interferon α, but not by insulin-like growth factor 1, were also blocked by TCR engagement. The capacity of various inhibitors to reverse TCR-mediated inhibition of IL-4 signaling suggested that activation of the Ras–mitogen-activated protein kinase pathway and of the calcineurin pathway contribute to desensitizing IL-4R. IL-4 responsiveness returned at about the time (∼12 h) that IL-12–mediated signaling was first observed. Thus, through different mechanisms, neither IL-4R nor IL-12R has any clear advantage in polarizing cells; rather, the availability of cytokine is probably the limiting factor in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.