OBJECTIVE-Pharmacological use of peroxisome proliferatoractivated receptor (PPAR)␦ agonists and transgenic overexpression of PPAR␦ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans.
RESEARCH DESIGN AND METHODS-The, and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.
RESULTS-Treatment with GW501516showed statistically significant reductions in fasting plasma triglycerides (Ϫ30%), apolipoprotein B (Ϫ26%), LDL cholesterol (Ϫ23%), and insulin (Ϫ11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P Ͻ 0.05) and 30% reduction in urinary isoprostanes (P ϭ 0.01) were also observed. Except for a lowering of triglycerides (Ϫ30%, P Ͻ 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO 2 directly originating from the fat content of the meal was increased (P Ͻ 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased.CONCLUSIONS-The PPAR␦ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. Diabetes 57: 332-339, 2008
Peroxisome proliferator-activated receptor (PPAR) b-null mice exhibit exacerbated epithelial cell proliferation and enhanced sensitivity to skin carcinogenesis, suggesting that ligand activation of PPARb will inhibit keratinocyte proliferation. By using of a highly specific ligand (GW0742) and the PPARb-null mouse model, activation of PPARb was found to selectively induce keratinocyte terminal differentiation and inhibit keratinocyte proliferation. Additionally, GW0742 was found to be anti-inflammatory due to inhibition of myeloperoxidase activity, independent of PPARb. These data suggest that ligand activation of PPARb could be a novel approach to selectively induce differentiation and inhibit cell proliferation, thus representing a new molecular target for the treatment of skin disorders resulting from altered cell proliferation such as psoriasis and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.