Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈ 4 − 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey (CKS) to study the size distribution of 2025 Kepler planets in fine detail. We detect a factor of ≥2 deficit in the occurrence rate distribution at 1.5-2.0 R ⊕ . This gap splits the population of close-in (P < 100 d) small planets into two size regimes: R P < 1.5 R ⊕ and R P = 2.0-3.0 R ⊕ , with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0 R ⊕ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5 R ⊕ or smaller with varying amounts of low-density gas that determine their total sizes.
We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around Solar-type (GK) stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R ⊕ . For each of the 156,000 target stars we assess the detectability of planets as a function of planet radius, R p , and orbital period, P , using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R ⋆ /a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e. bright, main sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R ⊕ . We count planets in small domains of R p and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R ⊕ ) and out to the longest orbital period (50 days, ∼0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df /d log R = k R R α with k R = 2.9 +0.5 −0.4 , α = −1.92 ± 0.11, and R = R p /R ⊕ . This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation, but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R p > 2 R ⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R ⊕ , in agreement with Doppler surveys. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P 0 . For smaller planets, P 0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R ⊕ planets in the Kepler field linearly increases with decreasing T eff , making these small planets seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).
The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the eclipsing binary stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 2×10 5 pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R < 2R ⊕ planets will have host stars brighter than K s = 9. Approximately 48 of the planets with R < 2R ⊕ lie within or near the habitable zone (0.2 < S/S ⊕ < 2); between 2 and 7 such planets have host stars brighter than K s = 9. We also expect approximately 1100 detections of planets with radii 2-4 R ⊕ , and 67 planets larger than 4 R ⊕ . Additional planets larger than 2 R ⊕ can be detected around stars that are not among the pre-selected target stars, because TESS will also deliver full-frame images at a 30 min cadence. The planet detections are accompanied by over one thousand astrophysical false positives. We discuss how TESS data and ground-based observations can be used to distinguish the false positives from genuine planets. We also discuss the prospects for follow-up observations to measure the masses and atmospheres of the TESS planets.
In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1 − 500 M Jup , with orbital semi-major axes typically between 1 − 75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51 ± 10% for companions with masses between 1 − 13 M Jup and orbital semi-major axes between 1 − 20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.