Climatological mean monthly distributions of pH in the total H + scale, total CO 2 concentration (TCO 2 ), and the degree of CaCO 3 saturation for the global surface ocean waters (excluding coastal areas) are calculated using a data set for pCO 2 , alkalinity and nutrient concentrations in surface waters (depths <50 m), which is built upon the GLODAP, CARINA and LDEO databases. The mutual consistency among these measured parameters is demonstrated using the inorganic carbon chemistry model with the dissociation constants for carbonic acid by Lueker et al. (2000) and for boric acid by Dickson (1990). Linear potential alkalinity-salinity relationships are established for 24 regions of the global ocean. The mean monthly distributions of pH and carbon chemistry parameters for the reference year 2005 are computed using the climatological mean monthly pCO 2 data adjusted to a reference year 2005 and the alkalinity estimated from the potential alkalinity-salinity relationships. The equatorial zone (4°N-4°S) of the Pacific is excluded from the analysis because of the large interannual changes associated with ENSO events. The pH thus calculated ranges from 7.9 to 8.2. Lower values are located in the upwelling regions in the tropical Pacific and in the Arabian and Bering Seas; higher values are found in the subpolar and polar waters during the spring-summer months of intense photosynthetic production. The vast areas of subtropical oceans have seasonally varying pH values ranging from 8.05 during warmer months to 8.15 during colder months. The warm tropical and subtropical waters are supersaturated by a factor of as much as 4.2 with respect to aragonite and 6.3 for calcite, whereas the cold subpolar and polar waters are supersaturated by 1.2 for aragonite and 2.0 for calcite because of the lower pH values resulting from greater TCO 2 concentrations. In the western Arctic Ocean, aragonite undersaturation is observed. The time-series data from the Bermuda (BATS), Hawaii (HOT) and the Drake Passage show that pH has been declining at a mean rate of about -0.02 pH per decade, and that pCO 2 has been increasing at about 19 atm per decade tracking the atmospheric pCO 2 increase rate. This suggests that the ocean acidification is caused primarily by the uptake of atmospheric CO 2 . The relative A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT2 importance of the four environmental drivers (temperature, salinity, alkalinity and total CO 2 concentration) controlling the seasonal variability of carbonate chemistry at these sites is quantitatively assessed. The ocean carbon chemistry is governed sensitively by the TA/TCO 2 ratio, and the rate of change in TA is equally important for the future ocean environment as is the TCO 2 in ocean waters increases in the future.
A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water f CO 2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. Highprofile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection Sabine et al., 2013;Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.