Tumor-associated macrophages (TAMs) are essential cellular components within tumor microenvironment (TME). TAMs are educated by TME to transform to M2 polarized population, showing a M2-like phenotype, IL-10high, IL-12low, TGF-βhigh. STAT3 signaling triggers crosstalk between tumor cells and TAMs, and is crucial for the regulation of malignant progression. In our study, legumain-targeting liposomal nanoparticles (NPs) encapsulating HC were employed to suppress STAT3 activity and “re-educate” TAMs, and to investigate the effects of suppression of tumor progression in vivo. The results showed that TAMs treated by HC encapsuled NPs could switch to M1-like phenotype, IL-10low, IL-12high, TGF-βlow, and the “re-educated” macrophages (M1-like macrophages) considerably demonstrated opposite effect of M2-like macrophages, especially the induction of 4T1 cells migration and invasion in vitro, and suppression of tumor growth, angiogenesis and metastasis in vivo. These data indicated that inhibition of STAT3 activity of TAMs by HC-NPs was able to reverse their phenotype and could regulate their crosstalk between tumor cells and TAMs in order to suppress tumor progression.
A growing body of evidence indicates that interactions between neoplastic cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are crucial in promoting tumor cell invasion and progression. Macrophages play an ambiguous role in these processes since this M1 phenotype correlates with tumoricidal capacity whereas TAMs of M2 phenotype exert tumor-promoting effects. Here, we provide evidence that interactions between mouse breast tumor cells and TAMs remodel the TME, leading to upregulation of Fra-1, a member of the FOS family of transcription factor. In turn, this proto-oncogene initiates activation of the IL-6/JAK/Stat3 signaling pathway. This creates a malignant switch in breast tumor cells, leading to increased release of pro-angiogenic factors MMP-9, VEGF and TGF-β from tumor cells and intensified invasion and progression of breast cancer. Proof of concept for the crucial role played by transcription factor Fra-1 in regulating these processes was established by specific knockdown of Fra-1 with siRNA which resulted in marked suppression of tumor cell invasion, angiogenesis and metastasis in a mouse breast cancer model. Such a strategy could eventually lead to future efficacious treatments of metastatic breast cancer.
BackgroundAccumulating researches have shown that epithelial-mesenchymal transition (EMT) contributes to tumor metastasis. Leptin, a key adipokine secreted from adipocytes, shapes the tumor microenvironment, potentiates the migration of breast cancer cells and angiogenesis, and is also involved in EMT. However, the potential mechanism remains unknown. This study aims to explore the effect of leptin on EMT in breast cancer cells and the underlying mechanism.MethodsWith the assessment of EMT-associated marker expression in MCF-7, SK-BR-3, and MDA-MB-468 cells, the effect of leptin on breast cancer cells was analyzed. Besides, an array of pathway inhibitors as well as RNA interference targeting pyruvate kinase M2 (PKM2) were used to clarify the underlying mechanism of leptin-mediated EMT in vitro and in vivo.ResultsThe results demonstrated that leptin promoted breast cancer cells EMT, visibly activated the PI3K/AKT signaling pathway, and upregulated PKM2 expression. An antibody against the leptin receptor (anti-ObR) and the PI3K/AKT signaling pathway inhibitor LY294002 significantly abolished leptin-induced PKM2 expression and EMT-associated marker expression. SiRNA targeting PKM2 partially abolished leptin-induced migration, invasion, and EMT-associated marker expression. In vivo xenograft experiments indicated that RNA interference against PKM2 suppressed breast cancer growth and metastasis.ConclusionsOur data suggest that leptin promotes EMT in breast cancer cells via the upregulation of PKM2 expression as well as activation of PI3K/AKT signaling pathway, and PKM2 might be one of the key points and potential targets for breast cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.