Esophageal cancer is among the most deadly malignant diseases. However, the genetic factors contributing to its occurrence are poorly understood. Multiple studies with large clinic-based cohorts revealed that variations of the phospholipase C epsilon (PLCE1) gene were associated with esophageal cancer susceptibility. However, the causative role of PLCE1 in esophageal cancer is not clear. We inactivated the functional alleles of PLCE1 by CRISPR/Cas9 genome editing technology. The resultant PLCE1 inactivated cells were analyzed both in vitro and in vivo. Our results showed that loss of PLCE1 dramatically decreased the invasion and proliferation capacity of esophageal carcinoma cells in vitro. Moreover, such PLCE1 inactivated tumor grafts exhibited significantly decreased tumor size in mice. We found that PLCE1 was required to maintain protein level of snail a key transcription factor responsible for invasion. Our further transcriptomic data revealed that deficient cells were significantly decreased in expression of genes enriched as targets of Snail. Strikingly, recovery of Snail protein at least partially rescued the invasion and proliferation capacity in PLCE1 inactivated cells. In ESCC clinical specimens, PLCE1 was correlated with tumor stage (P < .0001). Interestingly, PLCE1 expression was positively correlated Snail by immunohistochemistry in such specimens (P < .0001). Therefore, our functional experiments showed the essential roles of PLCE1 in esophageal carcinoma cells and provided evidences that targeting PLCE1 and its downstream molecules could be effective therapies for esophageal cancer.
miR-382 levels are reverse-correlated with ESCC poor outcomes, suggesting that miR-382 could be a potential predictive biomarker for both prognosis and treatment of ESCC.
Oesophageal cancer ranks as one of the most common malignancy in China and worldwide. Although genome‐wide association studies and molecular biology studies aim to elucidate the driver molecules in oesophageal cancer progression, the detailed mechanisms remain to be identified. Interestingly, RNF168 (RING finger protein 168) shows a high frequency of gene amplification in oesophageal cancer from TCGA database. Here, we report an important function for RNF168 protein in supporting oesophageal cancer growth and invasion by stabilizing STAT1 protein. RNF168 gene is amplified in oesophageal cancer samples, which tends to correlate with poor prognosis. Depletion RNF168 causes decreased cell proliferation and invasion in oesophageal cancer cells. Through unbiased RNA sequencing in RNF168 depleted oesophageal cancer cell, we identifies JAK‐STAT pathway is dramatically decreased. Depletion RNF168 reduced JAK‐STAT target genes, such as IRF1, IRF9 and IFITM1. Immuno‐precipitation reveals that RNF168 associates with STAT1 in the nucleus, stabilizing STAT1 protein and inhibiting its poly‐ubiquitination and degradation. Our study provides a novel mechanism that RNF168 promoting JAK‐STAT signalling in supporting oesophageal cancer progression. It could be a promising strategy to target RNF168 for oesophageal cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.