The integration of III-V on silicon is still a hot topic as it will open up a way to co-integrate Si CMOS logic with photonic devices. To reach this aim, several hurdles should be solved, and more particularly the generation of antiphase boundaries (APBs) at the III-V/Si(001) interface. Density functional theory (DFT) has been used to demonstrate the existence of a double-layer steps on nominal Si(001) which is formed during annealing under proper hydrogen chemical potential. This phenomenon could be explained by the formation of dimer vacancy lines which could be responsible for the preferential and selective etching of one type of step leading to the double step surface creation. To check this hypothesis, different experiments have been carried in an industrial 300 mm MOCVD where the total pressure during the anneal step of Si (001) surface has been varied. Under optimized conditions, an APBs-free GaAs layer was grown on a nominal Si(001) surface paving the way for III-V integration on silicon industrial platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.